The endomorphism rings of abelian groups
Content created by Fredrik Bakke, Jonathan Prieto-Cubides and Egbert Rijke.
Created on 2022-03-27.
Last modified on 2023-09-12.
module group-theory.endomorphism-rings-abelian-groups where
Imports
open import foundation.dependent-pair-types open import foundation.universe-levels open import group-theory.abelian-groups open import group-theory.addition-homomorphisms-abelian-groups open import group-theory.homomorphisms-abelian-groups open import ring-theory.rings
Idea
For any abelian group , the set of morphisms of abelian groups can be equipped with the structure of a ring, where addition is given pointwise and multiplication is given by composition.
Definition
The endomorphism ring on an abelian group
module _ {l : Level} (A : Ab l) where ab-endomorphism-ring-Ab : Ab l ab-endomorphism-ring-Ab = ab-hom-Ab A A endomorphism-ring-Ab : Ring l pr1 endomorphism-ring-Ab = ab-endomorphism-ring-Ab pr1 (pr1 (pr2 endomorphism-ring-Ab)) = comp-hom-Ab A A A pr2 (pr1 (pr2 endomorphism-ring-Ab)) = associative-comp-hom-Ab A A A A pr1 (pr1 (pr2 (pr2 endomorphism-ring-Ab))) = id-hom-Ab A pr1 (pr2 (pr1 (pr2 (pr2 endomorphism-ring-Ab)))) = left-unit-law-comp-hom-Ab A A pr2 (pr2 (pr1 (pr2 (pr2 endomorphism-ring-Ab)))) = right-unit-law-comp-hom-Ab A A pr1 (pr2 (pr2 (pr2 endomorphism-ring-Ab))) = left-distributive-comp-add-hom-Ab A A A pr2 (pr2 (pr2 (pr2 endomorphism-ring-Ab))) = right-distributive-comp-add-hom-Ab A A A
Recent changes
- 2023-09-12. Egbert Rijke. Beyond foundation (#751).
- 2023-09-10. Egbert Rijke and Fredrik Bakke. Cyclic groups (#723).
- 2023-03-13. Jonathan Prieto-Cubides. More maintenance (#506).
- 2023-03-10. Fredrik Bakke. Additions to
fix-import
(#497). - 2023-03-09. Jonathan Prieto-Cubides. Add hooks (#495).