The endomorphism rings of abelian groups
Content created by Fredrik Bakke, Jonathan Prieto-Cubides, Egbert Rijke, malarbol and Garrett Figueroa.
Created on 2022-03-27.
Last modified on 2025-08-11.
module group-theory.endomorphism-rings-abelian-groups where
Imports
open import elementary-number-theory.ring-of-integers open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.function-extensionality open import foundation.homotopies open import foundation.identity-types open import foundation.subtypes open import foundation.universe-levels open import group-theory.abelian-groups open import group-theory.addition-homomorphisms-abelian-groups open import group-theory.homomorphisms-abelian-groups open import group-theory.homomorphisms-groups open import group-theory.integer-multiples-of-elements-abelian-groups open import ring-theory.homomorphisms-rings open import ring-theory.rings
Idea
For any abelian group , the set of morphisms of abelian groups can be equipped with the structure of a ring, where addition is given pointwise and multiplication is given by composition.
Definition
The endomorphism ring on an abelian group
module _ {l : Level} (A : Ab l) where ab-endomorphism-ring-Ab : Ab l ab-endomorphism-ring-Ab = ab-hom-Ab A A endomorphism-ring-Ab : Ring l pr1 endomorphism-ring-Ab = ab-endomorphism-ring-Ab pr1 (pr1 (pr2 endomorphism-ring-Ab)) = comp-hom-Ab A A A pr2 (pr1 (pr2 endomorphism-ring-Ab)) = associative-comp-hom-Ab A A A A pr1 (pr1 (pr2 (pr2 endomorphism-ring-Ab))) = id-hom-Ab A pr1 (pr2 (pr1 (pr2 (pr2 endomorphism-ring-Ab)))) = left-unit-law-comp-hom-Ab A A pr2 (pr2 (pr1 (pr2 (pr2 endomorphism-ring-Ab)))) = right-unit-law-comp-hom-Ab A A pr1 (pr2 (pr2 (pr2 endomorphism-ring-Ab))) = left-distributive-comp-add-hom-Ab A A A pr2 (pr2 (pr2 (pr2 endomorphism-ring-Ab))) = right-distributive-comp-add-hom-Ab A A A
Properties
The integer multiple in an abelian group is the initial ring homomorphism in the endomorphism ring
module _ {l : Level} (A : Ab l) where hom-ring-integer-multiple-Ab : hom-Ring ℤ-Ring (endomorphism-ring-Ab A) hom-ring-integer-multiple-Ab = ( hom-integer-multiple-Ab A , λ {i} {j} → eq-htpy-hom-Ab ( A) ( A) ( λ x → distributive-integer-multiple-add-Ab A x i j)) , ( ( λ {i} {j} → eq-htpy-hom-Ab ( A) ( A) ( integer-multiple-mul-Ab A i j)) , ( eq-htpy-hom-Ab A A (integer-multiple-one-Ab A))) htpy-initial-hom-integer-multiple-endomorphism-ring-Ab : map-initial-hom-Ring (endomorphism-ring-Ab A) ~ hom-integer-multiple-Ab A htpy-initial-hom-integer-multiple-endomorphism-ring-Ab = htpy-initial-hom-Ring ( endomorphism-ring-Ab A) ( hom-ring-integer-multiple-Ab) eq-initial-hom-integer-multiple-endomorphism-ring-Ab : initial-hom-Ring (endomorphism-ring-Ab A) = hom-ring-integer-multiple-Ab eq-initial-hom-integer-multiple-endomorphism-ring-Ab = contraction-initial-hom-Ring ( endomorphism-ring-Ab A) ( hom-ring-integer-multiple-Ab)
Multiplication in a ring is a ring homomorphism in the ring of endomorphism of its underlying abelian additive group
module _ {l : Level} (R : Ring l) where ab-hom-mul-Ring : type-Ring R → type-Ring (endomorphism-ring-Ab (ab-Ring R)) ab-hom-mul-Ring w = ( mul-Ring R w) , ( λ {x y} → left-distributive-mul-add-Ring R w x y) preserves-add-ab-hom-mul-Ring : {x y : type-Ring R} → ab-hom-mul-Ring (add-Ring R x y) = add-Ring ( endomorphism-ring-Ab (ab-Ring R)) ( ab-hom-mul-Ring x) ( ab-hom-mul-Ring y) preserves-add-ab-hom-mul-Ring {x} {y} = eq-htpy-hom-Ab ( ab-Ring R) ( ab-Ring R) ( right-distributive-mul-add-Ring R x y) preserves-mul-ab-hom-mul-Ring : {x y : type-Ring R} → ab-hom-mul-Ring (mul-Ring R x y) = mul-Ring ( endomorphism-ring-Ab (ab-Ring R)) ( ab-hom-mul-Ring x) ( ab-hom-mul-Ring y) preserves-mul-ab-hom-mul-Ring {x} {y} = eq-htpy-hom-Ab ( ab-Ring R) ( ab-Ring R) ( associative-mul-Ring R x y) preserves-one-ab-hom-Ring : ab-hom-mul-Ring (one-Ring R) = one-Ring (endomorphism-ring-Ab (ab-Ring R)) preserves-one-ab-hom-Ring = eq-htpy-hom-Ab ( ab-Ring R) ( ab-Ring R) ( left-unit-law-mul-Ring R) hom-mul-endomorphism-ring-ab-Ring : hom-Ring R (endomorphism-ring-Ab (ab-Ring R)) hom-mul-endomorphism-ring-ab-Ring = ( ab-hom-mul-Ring , preserves-add-ab-hom-mul-Ring) , ( preserves-mul-ab-hom-mul-Ring , preserves-one-ab-hom-Ring)
Recent changes
- 2025-08-11. malarbol and Garrett Figueroa. Ring extensions of
ℚ
and rational modules (#1452). - 2025-07-27. malarbol. Some standard results on rings and modules (#1454).
- 2023-09-12. Egbert Rijke. Beyond foundation (#751).
- 2023-09-10. Egbert Rijke and Fredrik Bakke. Cyclic groups (#723).
- 2023-03-13. Jonathan Prieto-Cubides. More maintenance (#506).