Dependent sums of globular types
Content created by Egbert Rijke.
Created on 2024-12-03.
Last modified on 2024-12-03.
{-# OPTIONS --guardedness #-} module globular-types.dependent-sums-globular-types where
Imports
open import foundation.dependent-pair-types open import foundation.universe-levels open import globular-types.base-change-dependent-globular-types open import globular-types.dependent-globular-types open import globular-types.globular-maps open import globular-types.globular-types open import globular-types.sections-dependent-globular-types
Idea
Consider a dependent globular type
H
over a globular type G
. The
dependent sum¶
Σ G H
of H
is the globular type given by
(Σ G H)₀ := Σ G₀ H₀
(Σ G H)' (x , y) (x' , y') := Σ (G' x x') (H' y y').
Definitions
Dependent sums of dependent globular types
Σ-Globular-Type : {l1 l2 l3 l4 : Level} {G : Globular-Type l1 l2} (H : Dependent-Globular-Type l3 l4 G) → Globular-Type (l1 ⊔ l3) (l2 ⊔ l4) 0-cell-Globular-Type (Σ-Globular-Type H) = Σ _ (0-cell-Dependent-Globular-Type H) 1-cell-globular-type-Globular-Type (Σ-Globular-Type H) (x , y) (x' , y') = Σ-Globular-Type ( 1-cell-dependent-globular-type-Dependent-Globular-Type H y y') module _ {l1 l2 l3 l4 : Level} {G : Globular-Type l1 l2} (H : Dependent-Globular-Type l3 l4 G) where 0-cell-Σ-Globular-Type : UU (l1 ⊔ l3) 0-cell-Σ-Globular-Type = 0-cell-Globular-Type (Σ-Globular-Type H) 1-cell-globular-type-Σ-Globular-Type : (x y : 0-cell-Σ-Globular-Type) → Globular-Type (l2 ⊔ l4) (l2 ⊔ l4) 1-cell-globular-type-Σ-Globular-Type = 1-cell-globular-type-Globular-Type (Σ-Globular-Type H) 1-cell-Σ-Globular-Type : (x y : 0-cell-Globular-Type (Σ-Globular-Type H)) → UU (l2 ⊔ l4) 1-cell-Σ-Globular-Type = 1-cell-Globular-Type (Σ-Globular-Type H) 2-cell-globular-type-Σ-Globular-Type : {x y : 0-cell-Σ-Globular-Type} (f g : 1-cell-Σ-Globular-Type x y) → Globular-Type (l2 ⊔ l4) (l2 ⊔ l4) 2-cell-globular-type-Σ-Globular-Type = 2-cell-globular-type-Globular-Type (Σ-Globular-Type H) 2-cell-Σ-Globular-Type : {x y : 0-cell-Σ-Globular-Type} → (f g : 1-cell-Σ-Globular-Type x y) → UU (l2 ⊔ l4) 2-cell-Σ-Globular-Type = 2-cell-Globular-Type (Σ-Globular-Type H)
The first projection out of the dependent sum of a dependent globular type
pr1-Σ-Globular-Type : {l1 l2 l3 l4 : Level} {G : Globular-Type l1 l2} (H : Dependent-Globular-Type l3 l4 G) → globular-map (Σ-Globular-Type H) G 0-cell-globular-map (pr1-Σ-Globular-Type H) = pr1 1-cell-globular-map-globular-map (pr1-Σ-Globular-Type H) = pr1-Σ-Globular-Type ( 1-cell-dependent-globular-type-Dependent-Globular-Type H _ _) module _ {l1 l2 l3 l4 : Level} {G : Globular-Type l1 l2} (H : Dependent-Globular-Type l3 l4 G) where 0-cell-pr1-Σ-Globular-Type : 0-cell-Σ-Globular-Type H → 0-cell-Globular-Type G 0-cell-pr1-Σ-Globular-Type = 0-cell-globular-map (pr1-Σ-Globular-Type H) 1-cell-globular-map-pr1-Σ-Globular-Type : (x y : 0-cell-Σ-Globular-Type H) → globular-map ( 1-cell-globular-type-Σ-Globular-Type H x y) ( 1-cell-globular-type-Globular-Type G ( 0-cell-pr1-Σ-Globular-Type x) ( 0-cell-pr1-Σ-Globular-Type y)) 1-cell-globular-map-pr1-Σ-Globular-Type x y = 1-cell-globular-map-globular-map (pr1-Σ-Globular-Type H) 1-cell-pr1-Σ-Globular-Type : {x y : 0-cell-Σ-Globular-Type H} → 1-cell-Σ-Globular-Type H x y → 1-cell-Globular-Type G ( 0-cell-pr1-Σ-Globular-Type x) ( 0-cell-pr1-Σ-Globular-Type y) 1-cell-pr1-Σ-Globular-Type = 1-cell-globular-map (pr1-Σ-Globular-Type H)
The second projection of a dependent sum of globular types
pr2-Σ-Globular-Type : {l1 l2 l3 l4 : Level} {G : Globular-Type l1 l2} (H : Dependent-Globular-Type l3 l4 G) → section-Dependent-Globular-Type ( base-change-Dependent-Globular-Type (pr1-Σ-Globular-Type H) H) 0-cell-section-Dependent-Globular-Type (pr2-Σ-Globular-Type H) = pr2 1-cell-section-section-Dependent-Globular-Type (pr2-Σ-Globular-Type H) = pr2-Σ-Globular-Type ( 1-cell-dependent-globular-type-Dependent-Globular-Type H _ _) module _ {l1 l2 l3 l4 : Level} {G : Globular-Type l1 l2} (H : Dependent-Globular-Type l3 l4 G) where 0-cell-pr2-Σ-Globular-Type : (x : 0-cell-Σ-Globular-Type H) → 0-cell-base-change-Dependent-Globular-Type (pr1-Σ-Globular-Type H) H x 0-cell-pr2-Σ-Globular-Type = 0-cell-section-Dependent-Globular-Type (pr2-Σ-Globular-Type H) 1-cell-section-pr2-Σ-Globular-Type : {x x' : 0-cell-Σ-Globular-Type H} → section-Dependent-Globular-Type ( 1-cell-dependent-globular-type-base-change-Dependent-Globular-Type ( pr1-Σ-Globular-Type H) ( H) ( 0-cell-pr2-Σ-Globular-Type x) ( 0-cell-pr2-Σ-Globular-Type x')) 1-cell-section-pr2-Σ-Globular-Type = 1-cell-section-section-Dependent-Globular-Type (pr2-Σ-Globular-Type H) 1-cell-pr2-Σ-Globular-Type : {x x' : 0-cell-Σ-Globular-Type H} (f : 1-cell-Σ-Globular-Type H x x') → 1-cell-base-change-Dependent-Globular-Type ( pr1-Σ-Globular-Type H) ( H) ( 0-cell-pr2-Σ-Globular-Type x) ( 0-cell-pr2-Σ-Globular-Type x') ( f) 1-cell-pr2-Σ-Globular-Type = 1-cell-section-Dependent-Globular-Type ( base-change-Dependent-Globular-Type (pr1-Σ-Globular-Type H) H) ( pr2-Σ-Globular-Type H)
Recent changes
- 2024-12-03. Egbert Rijke. Hofmann-Streicher universes for graphs and globular types (#1196).