The large multiplicative group of positive real numbers
Content created by Louis Wasserman.
Created on 2025-12-03.
Last modified on 2025-12-03.
{-# OPTIONS --lossy-unification #-} module real-numbers.large-multiplicative-group-of-positive-real-numbers where
Imports
open import foundation.dependent-pair-types open import foundation.universe-levels open import group-theory.large-abelian-groups open import group-theory.large-groups open import group-theory.large-monoids open import group-theory.large-semigroups open import real-numbers.multiplication-positive-real-numbers open import real-numbers.multiplication-real-numbers open import real-numbers.multiplicative-inverses-positive-real-numbers open import real-numbers.positive-real-numbers open import real-numbers.raising-universe-levels-real-numbers open import real-numbers.similarity-positive-real-numbers
Idea
The positive real numbers form a large abelian group under multiplication.
Definition
large-semigroup-mul-ℝ⁺ : Large-Semigroup lsuc large-semigroup-mul-ℝ⁺ = make-Large-Semigroup ( ℝ⁺-Set) ( mul-ℝ⁺) ( associative-mul-ℝ⁺) large-monoid-mul-ℝ⁺ : Large-Monoid lsuc (_⊔_) large-monoid-mul-ℝ⁺ = make-Large-Monoid ( large-semigroup-mul-ℝ⁺) ( large-similarity-relation-sim-ℝ⁺) ( raise-ℝ⁺) ( λ l (x , _) → sim-raise-ℝ l x) ( preserves-sim-mul-ℝ⁺) ( one-ℝ⁺) ( left-unit-law-mul-ℝ⁺) ( right-unit-law-mul-ℝ⁺) large-group-mul-ℝ⁺ : Large-Group lsuc (_⊔_) large-group-mul-ℝ⁺ = make-Large-Group ( large-monoid-mul-ℝ⁺) ( inv-ℝ⁺) ( preserves-sim-inv-ℝ⁺) ( eq-left-inverse-law-mul-ℝ⁺) ( eq-right-inverse-law-mul-ℝ⁺) large-ab-mul-ℝ⁺ : Large-Ab lsuc (_⊔_) large-ab-mul-ℝ⁺ = make-Large-Ab ( large-group-mul-ℝ⁺) ( commutative-mul-ℝ⁺)
Recent changes
- 2025-12-03. Louis Wasserman. Integer powers of positive reals (#1741).