Commuting squares of morphisms in precategories
Content created by Fredrik Bakke and Egbert Rijke.
Created on 2023-09-26.
Last modified on 2024-04-25.
module category-theory.commuting-squares-of-morphisms-in-precategories where
Imports
open import category-theory.commuting-squares-of-morphisms-in-set-magmoids open import category-theory.precategories open import foundation.universe-levels
Idea
A square of morphisms
x ------> y
| |
| |
∨ ∨
z ------> w
in a precategory C
is said to commute
if there is an identification between both
composites:
bottom ∘ left = right ∘ top.
Definitions
coherence-square-hom-Precategory : {l1 l2 : Level} (C : Precategory l1 l2) {x y z w : obj-Precategory C} (top : hom-Precategory C x y) (left : hom-Precategory C x z) (right : hom-Precategory C y w) (bottom : hom-Precategory C z w) → UU l2 coherence-square-hom-Precategory C = coherence-square-hom-Set-Magmoid (set-magmoid-Precategory C)
Recent changes
- 2024-04-25. Fredrik Bakke. chore: Fix arrowheads in character diagrams (#1124).
- 2023-11-01. Fredrik Bakke. Fun with functors (#886).
- 2023-09-27. Fredrik Bakke. Presheaf categories (#801).
- 2023-09-26. Fredrik Bakke and Egbert Rijke. Maps of categories, functor categories, and small subprecategories (#794).