The action on homotopies of the flat modality

Content created by Fredrik Bakke.

Created on 2024-09-06.
Last modified on 2024-09-23.

{-# OPTIONS --cohesion --flat-split #-}

module modal-type-theory.action-on-homotopies-flat-modality where
Imports
open import foundation.homotopies
open import foundation.identity-types
open import foundation.universe-levels

open import modal-type-theory.action-on-identifications-flat-modality
open import modal-type-theory.flat-modality
open import modal-type-theory.functoriality-flat-modality

Idea

Given a crisp homotopy of maps f ~ g, then there is a homotopy ♭ f ~ ♭ g where ♭ f is the functorial action of the flat modality on maps.

Definitions

The flat modality’s action on crisp homotopies

module _
  {@l1 l2 : Level} {@A : UU l1} {@B : @A  UU l2}
  {@f g : (@x : A)  B x}
  where

  action-flat-crisp-htpy :
    @((@x : A)  f x  g x) 
    action-flat-crisp-dependent-map f ~ action-flat-crisp-dependent-map g
  action-flat-crisp-htpy H (intro-flat x) = ap-flat (H x)

The flat modality’s action on homotopies

module _
  {@l1 l2 : Level} {@A : UU l1} {@B : A  UU l2}
  {@f g : (x : A)  B x}
  where

  action-flat-htpy :
    @f ~ g  action-flat-dependent-map f ~ action-flat-dependent-map g
  action-flat-htpy H = action-flat-crisp-htpy  x  H x)

Properties

Computing the flat action on the reflexivity homotopy

module _
  {@l1 l2 : Level} {@A : UU l1} {@B : A  UU l2} {@f : (@x : A)  B x}
  where

  compute-action-flat-refl-htpy :
    action-flat-crisp-htpy  x  (refl {x = f x})) ~ refl-htpy
  compute-action-flat-refl-htpy (intro-flat x) = refl

Recent changes