The action on homotopies of the flat modality
Content created by Fredrik Bakke.
Created on 2024-09-06.
Last modified on 2024-09-23.
{-# OPTIONS --cohesion --flat-split #-} module modal-type-theory.action-on-homotopies-flat-modality where
Imports
open import foundation.homotopies open import foundation.identity-types open import foundation.universe-levels open import modal-type-theory.action-on-identifications-flat-modality open import modal-type-theory.flat-modality open import modal-type-theory.functoriality-flat-modality
Idea
Given a crisp
homotopy of maps f ~ g
, then there is a
homotopy ♭ f ~ ♭ g
where ♭ f
is the
functorial action of the flat modality on maps.
Definitions
The flat modality’s action on crisp homotopies
module _ {@♭ l1 l2 : Level} {@♭ A : UU l1} {@♭ B : @♭ A → UU l2} {@♭ f g : (@♭ x : A) → B x} where action-flat-crisp-htpy : @♭ ((@♭ x : A) → f x = g x) → action-flat-crisp-dependent-map f ~ action-flat-crisp-dependent-map g action-flat-crisp-htpy H (intro-flat x) = ap-flat (H x)
The flat modality’s action on homotopies
module _ {@♭ l1 l2 : Level} {@♭ A : UU l1} {@♭ B : A → UU l2} {@♭ f g : (x : A) → B x} where action-flat-htpy : @♭ f ~ g → action-flat-dependent-map f ~ action-flat-dependent-map g action-flat-htpy H = action-flat-crisp-htpy (λ x → H x)
Properties
Computing the flat action on the reflexivity homotopy
module _ {@♭ l1 l2 : Level} {@♭ A : UU l1} {@♭ B : A → UU l2} {@♭ f : (@♭ x : A) → B x} where compute-action-flat-refl-htpy : action-flat-crisp-htpy (λ x → (refl {x = f x})) ~ refl-htpy compute-action-flat-refl-htpy (intro-flat x) = refl
Recent changes
- 2024-09-23. Fredrik Bakke. Some typos, wording improvements, and brief prose additions (#1186).
- 2024-09-06. Fredrik Bakke. Basic properties of the flat modality (#1078).