The large additive group of Dedekind real numbers

Content created by Louis Wasserman.

Created on 2025-11-06.
Last modified on 2025-11-09.

{-# OPTIONS --lossy-unification #-}

module real-numbers.large-additive-group-of-real-numbers where
Imports
open import elementary-number-theory.additive-group-of-rational-numbers

open import foundation.dependent-pair-types
open import foundation.identity-types
open import foundation.universe-levels

open import group-theory.abelian-groups
open import group-theory.homomorphisms-abelian-groups
open import group-theory.large-abelian-groups
open import group-theory.large-commutative-monoids
open import group-theory.large-groups
open import group-theory.large-monoids
open import group-theory.large-semigroups

open import real-numbers.addition-real-numbers
open import real-numbers.dedekind-real-numbers
open import real-numbers.negation-real-numbers
open import real-numbers.raising-universe-levels-real-numbers
open import real-numbers.rational-real-numbers
open import real-numbers.similarity-real-numbers

Idea

The Dedekind real numbers form a large abelian group under addition.

Definition

large-semigroup-add-ℝ : Large-Semigroup lsuc
large-semigroup-add-ℝ =
  make-Large-Semigroup
    ( ℝ-Set)
    ( add-ℝ)
    ( associative-add-ℝ)

large-monoid-add-ℝ : Large-Monoid lsuc (_⊔_)
large-monoid-add-ℝ =
  make-Large-Monoid
    ( large-semigroup-add-ℝ)
    ( large-similarity-relation-sim-ℝ)
    ( raise-ℝ)
    ( sim-raise-ℝ)
    ( λ a b a~b c d c~d  preserves-sim-add-ℝ a~b c~d)
    ( zero-ℝ)
    ( left-unit-law-add-ℝ)
    ( right-unit-law-add-ℝ)

large-commutative-monoid-add-ℝ : Large-Commutative-Monoid lsuc (_⊔_)
large-commutative-monoid-add-ℝ =
  make-Large-Commutative-Monoid
    ( large-monoid-add-ℝ)
    ( commutative-add-ℝ)

large-group-add-ℝ : Large-Group lsuc (_⊔_)
large-group-add-ℝ =
  make-Large-Group
    ( large-monoid-add-ℝ)
    ( neg-ℝ)
    ( λ _ _  preserves-sim-neg-ℝ)
    ( eq-left-inverse-law-add-ℝ)
    ( eq-right-inverse-law-add-ℝ)

large-ab-add-ℝ : Large-Ab lsuc (_⊔_)
large-ab-add-ℝ =
  make-Large-Ab
    ( large-group-add-ℝ)
    ( commutative-add-ℝ)

Properties

The small abelian group of real numbers at a universe level

ab-add-ℝ : (l : Level)  Ab (lsuc l)
ab-add-ℝ = ab-Large-Ab large-ab-add-ℝ

The canonical embedding of rational numbers in the real numbers is an abelian group homomorphism

hom-ab-add-real-ℚ : hom-Ab abelian-group-add-ℚ (ab-add-ℝ lzero)
hom-ab-add-real-ℚ = (real-ℚ , inv (add-real-ℚ _ _))

Raising the universe levels of real numbers is an abelian group homomorphism

hom-ab-add-raise-ℝ : (l1 l2 : Level)  hom-Ab (ab-add-ℝ l1) (ab-add-ℝ (l1  l2))
hom-ab-add-raise-ℝ = hom-raise-Large-Ab large-ab-add-ℝ

Recent changes