The large additive group of Dedekind real numbers
Content created by Louis Wasserman.
Created on 2025-11-06.
Last modified on 2025-11-06.
{-# OPTIONS --lossy-unification #-} module real-numbers.large-additive-group-of-real-numbers where
Imports
open import foundation.universe-levels open import group-theory.abelian-groups open import group-theory.large-abelian-groups open import group-theory.large-commutative-monoids open import group-theory.large-groups open import group-theory.large-monoids open import group-theory.large-semigroups open import real-numbers.addition-real-numbers open import real-numbers.dedekind-real-numbers open import real-numbers.negation-real-numbers open import real-numbers.raising-universe-levels-real-numbers open import real-numbers.rational-real-numbers open import real-numbers.similarity-real-numbers
Idea
The Dedekind real numbers form a large abelian group under addition.
Definition
large-semigroup-add-ℝ : Large-Semigroup lsuc large-semigroup-add-ℝ = make-Large-Semigroup ( ℝ-Set) ( add-ℝ) ( associative-add-ℝ) large-monoid-add-ℝ : Large-Monoid lsuc (_⊔_) large-monoid-add-ℝ = make-Large-Monoid ( large-semigroup-add-ℝ) ( large-similarity-relation-sim-ℝ) ( raise-ℝ) ( sim-raise-ℝ) ( λ a b a~b c d c~d → preserves-sim-add-ℝ a~b c~d) ( zero-ℝ) ( left-unit-law-add-ℝ) ( right-unit-law-add-ℝ) large-commutative-monoid-add-ℝ : Large-Commutative-Monoid lsuc (_⊔_) large-commutative-monoid-add-ℝ = make-Large-Commutative-Monoid ( large-monoid-add-ℝ) ( commutative-add-ℝ) large-group-add-ℝ : Large-Group lsuc (_⊔_) large-group-add-ℝ = make-Large-Group ( large-monoid-add-ℝ) ( neg-ℝ) ( λ _ _ → preserves-sim-neg-ℝ) ( eq-left-inverse-law-add-ℝ) ( eq-right-inverse-law-add-ℝ) large-ab-add-ℝ : Large-Ab lsuc (_⊔_) large-ab-add-ℝ = make-Large-Ab ( large-group-add-ℝ) ( commutative-add-ℝ)
Properties
The small abelian group of real numbers at a universe level
ab-add-ℝ : (l : Level) → Ab (lsuc l) ab-add-ℝ = ab-Large-Ab large-ab-add-ℝ
Recent changes
- 2025-11-06. Louis Wasserman. The large ring of real numbers (#1664).