Saturation of inequality of nonnegative real numbers
Content created by Louis Wasserman.
Created on 2025-11-09.
Last modified on 2025-11-09.
{-# OPTIONS --lossy-unification #-} module real-numbers.saturation-inequality-nonnegative-real-numbers where
Imports
open import elementary-number-theory.positive-rational-numbers open import foundation.dependent-pair-types open import foundation.transport-along-identifications open import foundation.universe-levels open import real-numbers.addition-nonnegative-real-numbers open import real-numbers.inequality-nonnegative-real-numbers open import real-numbers.inequality-real-numbers open import real-numbers.nonnegative-real-numbers open import real-numbers.saturation-inequality-real-numbers open import real-numbers.similarity-nonnegative-real-numbers
Idea
If x ≤ y + ε for nonnegative
real numbers x and y and every
positive rational ε,
then x ≤ y.
Despite being a property of inequality of nonnegative real numbers, this is much easier to prove via strict inequality, so this page is dedicated to just this property to prevent circular dependency.
Definition
module _ {l1 l2 : Level} (x : ℝ⁰⁺ l1) (y : ℝ⁰⁺ l2) where abstract saturated-leq-ℝ⁰⁺ : ((ε : ℚ⁺) → leq-ℝ⁰⁺ x (y +ℝ⁰⁺ nonnegative-real-ℚ⁺ ε)) → leq-ℝ⁰⁺ x y saturated-leq-ℝ⁰⁺ = saturated-leq-ℝ (real-ℝ⁰⁺ x) (real-ℝ⁰⁺ y)
Corollaries
If a nonnegative real number is less than or equal to all positive rational numbers, it is similar to zero
sim-zero-le-positive-rational-ℝ⁰⁺ : {l : Level} (x : ℝ⁰⁺ l) → ((ε : ℚ⁺) → leq-ℝ⁰⁺ x (nonnegative-real-ℚ⁺ ε)) → sim-zero-ℝ⁰⁺ x sim-zero-le-positive-rational-ℝ⁰⁺ x H = sim-sim-leq-ℝ ( leq-zero-ℝ⁰⁺ x , saturated-leq-ℝ⁰⁺ ( x) ( zero-ℝ⁰⁺) ( λ ε → inv-tr (leq-ℝ⁰⁺ x) (left-unit-law-add-ℝ⁰⁺ _) (H ε)))
Recent changes
- 2025-11-09. Louis Wasserman. Cleanups in real numbers (#1675).