Binary globular maps
Content created by Egbert Rijke.
Created on 2024-12-03.
Last modified on 2024-12-03.
{-# OPTIONS --guardedness #-} module globular-types.binary-globular-maps where
Imports
open import foundation.universe-levels open import globular-types.globular-maps open import globular-types.globular-types
Idea
Consider three globular types G
, H
, and
K
. A binary globular map¶
f : G → H → K
consists of a binary map
f₀ : G₀ → H₀ → K₀
and for every x x' : G₀
, y y' : H₀
a binary globular map
f' : G' x x' → H' y y' → K (f x y) (f x' y')
on the 1
-cells of G
and H
.
Definitions
Binary globular maps
record binary-globular-map {l1 l2 l3 l4 l5 l6 : Level} (G : Globular-Type l1 l2) (H : Globular-Type l3 l4) (K : Globular-Type l5 l6) : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4 ⊔ l5 ⊔ l6) where coinductive field 0-cell-binary-globular-map : 0-cell-Globular-Type G → 0-cell-Globular-Type H → 0-cell-Globular-Type K 1-cell-binary-globular-map-binary-globular-map : {x x' : 0-cell-Globular-Type G} {y y' : 0-cell-Globular-Type H} → binary-globular-map ( 1-cell-globular-type-Globular-Type G x x') ( 1-cell-globular-type-Globular-Type H y y') ( 1-cell-globular-type-Globular-Type K ( 0-cell-binary-globular-map x y) ( 0-cell-binary-globular-map x' y'))
Recent changes
- 2024-12-03. Egbert Rijke. Hofmann-Streicher universes for graphs and globular types (#1196).