Lower bounds in posets

Content created by Fredrik Bakke and Egbert Rijke.

Created on 2023-05-07.
Last modified on 2024-11-20.

module order-theory.lower-bounds-posets where
Imports
open import foundation.dependent-pair-types
open import foundation.propositions
open import foundation.universe-levels

open import order-theory.posets

Idea

A lower bound of two elements a and b in a poset P is an element x such that both x ≤ a and x ≤ b hold. Similarly, a lower bound of a family a : I → P of elements in P is an element x such that x ≤ a i holds for every i : I.

Definitions

Binary lower bounds

module _
  {l1 l2 : Level} (P : Poset l1 l2) (a b x : type-Poset P)
  where

  is-binary-lower-bound-Poset-Prop : Prop l2
  is-binary-lower-bound-Poset-Prop =
    product-Prop (leq-prop-Poset P x a) (leq-prop-Poset P x b)

  is-binary-lower-bound-Poset : UU l2
  is-binary-lower-bound-Poset =
    type-Prop is-binary-lower-bound-Poset-Prop

  is-prop-is-binary-lower-bound-Poset : is-prop is-binary-lower-bound-Poset
  is-prop-is-binary-lower-bound-Poset =
    is-prop-type-Prop is-binary-lower-bound-Poset-Prop

module _
  {l1 l2 : Level} (P : Poset l1 l2) {a b x : type-Poset P}
  (H : is-binary-lower-bound-Poset P a b x)
  where

  leq-left-is-binary-lower-bound-Poset : leq-Poset P x a
  leq-left-is-binary-lower-bound-Poset = pr1 H

  leq-right-is-binary-lower-bound-Poset : leq-Poset P x b
  leq-right-is-binary-lower-bound-Poset = pr2 H

Lower bounds of families of elements

module _
  {l1 l2 l3 : Level} (P : Poset l1 l2) {I : UU l3} (x : I  type-Poset P)
  where

  is-lower-bound-family-of-elements-prop-Poset : type-Poset P  Prop (l2  l3)
  is-lower-bound-family-of-elements-prop-Poset z =
    Π-Prop I  i  leq-prop-Poset P z (x i))

  is-lower-bound-family-of-elements-Poset : type-Poset P  UU (l2  l3)
  is-lower-bound-family-of-elements-Poset z =
    type-Prop (is-lower-bound-family-of-elements-prop-Poset z)

  is-prop-is-lower-bound-family-of-elements-Poset :
    (z : type-Poset P)  is-prop (is-lower-bound-family-of-elements-Poset z)
  is-prop-is-lower-bound-family-of-elements-Poset z =
    is-prop-type-Prop (is-lower-bound-family-of-elements-prop-Poset z)

Properties

Any element less than a lower bound of a and b is a lower bound of a and b

module _
  {l1 l2 : Level} (P : Poset l1 l2) {a b x : type-Poset P}
  (H : is-binary-lower-bound-Poset P a b x)
  where

  is-binary-lower-bound-leq-Poset :
    {y : type-Poset P} 
    leq-Poset P y x  is-binary-lower-bound-Poset P a b y
  pr1 (is-binary-lower-bound-leq-Poset K) =
    transitive-leq-Poset P _ x a
      ( leq-left-is-binary-lower-bound-Poset P H)
      ( K)
  pr2 (is-binary-lower-bound-leq-Poset K) =
    transitive-leq-Poset P _ x b
      ( leq-right-is-binary-lower-bound-Poset P H)
      ( K)

Any element less than a lower bound of a family of elements a is a lower bound of a

module _
  {l1 l2 l3 : Level} (P : Poset l1 l2) {I : UU l3} {a : I  type-Poset P}
  {x : type-Poset P} (H : is-lower-bound-family-of-elements-Poset P a x)
  where

  is-lower-bound-family-of-elements-leq-Poset :
    {y : type-Poset P}  leq-Poset P y x 
    is-lower-bound-family-of-elements-Poset P a y
  is-lower-bound-family-of-elements-leq-Poset K i =
    transitive-leq-Poset P _ x (a i) (H i) K

Recent changes