Apartness of real numbers

Content created by Fredrik Bakke and Louis Wasserman.

Created on 2025-02-12.
Last modified on 2025-02-12.

module real-numbers.apartness-real-numbers where
Imports
open import foundation.apartness-relations
open import foundation.disjunction
open import foundation.empty-types
open import foundation.function-types
open import foundation.identity-types
open import foundation.large-apartness-relations
open import foundation.large-binary-relations
open import foundation.negated-equality
open import foundation.negation
open import foundation.propositions
open import foundation.transport-along-identifications
open import foundation.universe-levels

open import real-numbers.dedekind-real-numbers
open import real-numbers.strict-inequality-real-numbers

Idea

Two real numbers are apart if one is strictly less than the other.

module _
  {l1 l2 : Level}
  (x :  l1)
  (y :  l2)
  where

  apart-ℝ-Prop : Prop (l1  l2)
  apart-ℝ-Prop = le-ℝ-Prop x y  le-ℝ-Prop y x

  apart-ℝ : UU (l1  l2)
  apart-ℝ = type-Prop apart-ℝ-Prop

Properties

Apartness is antireflexive

antireflexive-apart-ℝ : {l : Level}  (x :  l)  ¬ (apart-ℝ x x)
antireflexive-apart-ℝ x =
  elim-disjunction empty-Prop (irreflexive-le-ℝ x) (irreflexive-le-ℝ x)

Apartness is symmetric

symmetric-apart-ℝ :
  {l1 l2 : Level}  (x :  l1) (y :  l2)  apart-ℝ x y  apart-ℝ y x
symmetric-apart-ℝ x y =
  elim-disjunction (apart-ℝ-Prop y x) inr-disjunction inl-disjunction

Apartness is cotransitive

cotransitive-apart-ℝ : is-cotransitive-Large-Relation-Prop  apart-ℝ-Prop
cotransitive-apart-ℝ x y z =
  elim-disjunction
    ( apart-ℝ-Prop x z  apart-ℝ-Prop z y)
    ( λ x<y 
      elim-disjunction
        ( apart-ℝ-Prop x z  apart-ℝ-Prop z y)
        ( inl-disjunction  inl-disjunction)
        ( inr-disjunction  inl-disjunction)
        ( cotransitive-le-ℝ x y z x<y))
    ( λ y<x 
      elim-disjunction
        ( apart-ℝ-Prop x z  apart-ℝ-Prop z y)
        ( inr-disjunction  inr-disjunction)
        ( inl-disjunction  inr-disjunction)
        ( cotransitive-le-ℝ y x z y<x))

Apartness on the reals is a large apartness relation

large-apartness-relation-ℝ : Large-Apartness-Relation _⊔_ 
apart-prop-Large-Apartness-Relation large-apartness-relation-ℝ =
  apart-ℝ-Prop
antirefl-Large-Apartness-Relation large-apartness-relation-ℝ =
  antireflexive-apart-ℝ
symmetric-Large-Apartness-Relation large-apartness-relation-ℝ =
  symmetric-apart-ℝ
cotransitive-Large-Apartness-Relation large-apartness-relation-ℝ =
  cotransitive-apart-ℝ

Apart real numbers are nonequal

nonequal-apart-ℝ : {l : Level} (x y :  l)  apart-ℝ x y  x  y
nonequal-apart-ℝ x y =
  nonequal-apart-Large-Apartness-Relation large-apartness-relation-ℝ

Recent changes