The binomial theorem in commutative rings
Content created by Fredrik Bakke, Jonathan Prieto-Cubides and Egbert Rijke.
Created on 2023-02-20.
Last modified on 2023-05-16.
module commutative-algebra.binomial-theorem-commutative-rings where
Imports
open import commutative-algebra.binomial-theorem-commutative-semirings open import commutative-algebra.commutative-rings open import commutative-algebra.powers-of-elements-commutative-rings open import commutative-algebra.sums-commutative-rings open import elementary-number-theory.addition-natural-numbers open import elementary-number-theory.binomial-coefficients open import elementary-number-theory.distance-natural-numbers open import elementary-number-theory.natural-numbers open import foundation.homotopies open import foundation.identity-types open import foundation.universe-levels open import linear-algebra.vectors-on-commutative-rings open import ring-theory.binomial-theorem-rings open import univalent-combinatorics.standard-finite-types
Idea
The binomial theorem in commutative rings asserts that for any two elements
x
and y
of a commutative ring A
and any natural number n
, we have
(x + y)ⁿ = ∑_{0 ≤ i < n+1} (n choose i) xⁱ yⁿ⁻ⁱ.
Definitions
Binomial sums
binomial-sum-Commutative-Ring : {l : Level} (A : Commutative-Ring l) (n : ℕ) (f : functional-vec-Commutative-Ring A (succ-ℕ n)) → type-Commutative-Ring A binomial-sum-Commutative-Ring A = binomial-sum-Ring (ring-Commutative-Ring A)
Properties
Binomial sums of one and two elements
module _ {l : Level} (A : Commutative-Ring l) where binomial-sum-one-element-Commutative-Ring : (f : functional-vec-Commutative-Ring A 1) → binomial-sum-Commutative-Ring A 0 f = head-functional-vec-Commutative-Ring A 0 f binomial-sum-one-element-Commutative-Ring = binomial-sum-one-element-Ring (ring-Commutative-Ring A) binomial-sum-two-elements-Commutative-Ring : (f : functional-vec-Commutative-Ring A 2) → binomial-sum-Commutative-Ring A 1 f = add-Commutative-Ring A (f (zero-Fin 1)) (f (one-Fin 1)) binomial-sum-two-elements-Commutative-Ring = binomial-sum-two-elements-Ring (ring-Commutative-Ring A)
Binomial sums are homotopy invariant
module _ {l : Level} (A : Commutative-Ring l) where htpy-binomial-sum-Commutative-Ring : (n : ℕ) {f g : functional-vec-Commutative-Ring A (succ-ℕ n)} → (f ~ g) → binomial-sum-Commutative-Ring A n f = binomial-sum-Commutative-Ring A n g htpy-binomial-sum-Commutative-Ring = htpy-binomial-sum-Ring (ring-Commutative-Ring A)
Multiplication distributes over sums
module _ {l : Level} (A : Commutative-Ring l) where left-distributive-mul-binomial-sum-Commutative-Ring : (n : ℕ) (x : type-Commutative-Ring A) (f : functional-vec-Commutative-Ring A (succ-ℕ n)) → mul-Commutative-Ring A x (binomial-sum-Commutative-Ring A n f) = binomial-sum-Commutative-Ring A n (λ i → mul-Commutative-Ring A x (f i)) left-distributive-mul-binomial-sum-Commutative-Ring = left-distributive-mul-binomial-sum-Ring (ring-Commutative-Ring A) right-distributive-mul-binomial-sum-Commutative-Ring : (n : ℕ) (f : functional-vec-Commutative-Ring A (succ-ℕ n)) → (x : type-Commutative-Ring A) → mul-Commutative-Ring A (binomial-sum-Commutative-Ring A n f) x = binomial-sum-Commutative-Ring A n (λ i → mul-Commutative-Ring A (f i) x) right-distributive-mul-binomial-sum-Commutative-Ring = right-distributive-mul-binomial-sum-Ring (ring-Commutative-Ring A)
Theorem
Binomial theorem for commutative rings
binomial-theorem-Commutative-Ring : {l : Level} (A : Commutative-Ring l) → (n : ℕ) (x y : type-Commutative-Ring A) → power-Commutative-Ring A n (add-Commutative-Ring A x y) = binomial-sum-Commutative-Ring A n ( λ i → mul-Commutative-Ring A ( power-Commutative-Ring A (nat-Fin (succ-ℕ n) i) x) ( power-Commutative-Ring A (dist-ℕ (nat-Fin (succ-ℕ n) i) n) y)) binomial-theorem-Commutative-Ring A n x y = binomial-theorem-Ring ( ring-Commutative-Ring A) ( n) ( x) ( y) ( commutative-mul-Commutative-Ring A x y)
Corollaries
Computing (x+y)ⁿ⁺ᵐ
as a linear combination of xⁿ
and yᵐ
is-linear-combination-power-add-Commutative-Ring : {l : Level} (A : Commutative-Ring l) (n m : ℕ) (x y : type-Commutative-Ring A) → power-Commutative-Ring A (n +ℕ m) (add-Commutative-Ring A x y) = add-Commutative-Ring A ( mul-Commutative-Ring A ( power-Commutative-Ring A m y) ( sum-Commutative-Ring A n ( λ i → mul-nat-scalar-Commutative-Ring A ( binomial-coefficient-ℕ (n +ℕ m) (nat-Fin n i)) ( mul-Commutative-Ring A ( power-Commutative-Ring A (nat-Fin n i) x) ( power-Commutative-Ring A (dist-ℕ (nat-Fin n i) n) y))))) ( mul-Commutative-Ring A ( power-Commutative-Ring A n x) ( sum-Commutative-Ring A ( succ-ℕ m) ( λ i → mul-nat-scalar-Commutative-Ring A ( binomial-coefficient-ℕ ( n +ℕ m) ( n +ℕ (nat-Fin (succ-ℕ m) i))) ( mul-Commutative-Ring A ( power-Commutative-Ring A (nat-Fin (succ-ℕ m) i) x) ( power-Commutative-Ring A ( dist-ℕ (nat-Fin (succ-ℕ m) i) m) ( y)))))) is-linear-combination-power-add-Commutative-Ring A = is-linear-combination-power-add-Commutative-Semiring ( commutative-semiring-Commutative-Ring A)
Recent changes
- 2023-05-16. Fredrik Bakke. Swap from
md
totext
code blocks (#622). - 2023-05-13. Fredrik Bakke. Refactor to use infix binary operators for arithmetic (#620).
- 2023-05-04. Egbert Rijke. Cleaning up commutative algebra (#589).
- 2023-03-19. Egbert Rijke. Refactoring ideals in semirings, rings, commutative semirings, and commutative rings; refactoring a corollary of the binomial theorem; constructing the nilradical of an ideal in a commutative ring (#525).
- 2023-03-14. Fredrik Bakke. Remove all unused imports (#502).