The pigeonhole principle

Content created by Egbert Rijke, Fredrik Bakke, Jonathan Prieto-Cubides and Eléonore Mangel.

Created on 2022-02-15.
Last modified on 2024-02-06.

module univalent-combinatorics.pigeonhole-principle where
Imports
open import elementary-number-theory.inequality-natural-numbers
open import elementary-number-theory.natural-numbers
open import elementary-number-theory.strict-inequality-natural-numbers

open import foundation.coproduct-types
open import foundation.dependent-pair-types
open import foundation.embeddings
open import foundation.empty-types
open import foundation.equivalences
open import foundation.function-types
open import foundation.identity-types
open import foundation.injective-maps
open import foundation.negated-equality
open import foundation.negation
open import foundation.pairs-of-distinct-elements
open import foundation.propositional-truncations
open import foundation.propositions
open import foundation.unit-type
open import foundation.universe-levels
open import foundation.whiskering-homotopies-composition

open import univalent-combinatorics.counting
open import univalent-combinatorics.embeddings-standard-finite-types
open import univalent-combinatorics.finite-types
open import univalent-combinatorics.repetitions-of-values
open import univalent-combinatorics.standard-finite-types

Idea

If f : X → Y is an injective map between finite types X and Y with k and l elements, then k ≤ l. Conversely, if l < k, then no map f : X → Y is injective.

Theorems

The pigeonhole principle for standard finite types

Given an embedding Fin k ↪ Fin l, it follows that k ≤ l

leq-emb-Fin :
  (k l : )  Fin k  Fin l  k ≤-ℕ l
leq-emb-Fin zero-ℕ zero-ℕ f = refl-leq-ℕ zero-ℕ
leq-emb-Fin (succ-ℕ k) zero-ℕ f = ex-falso (map-emb f (inr star))
leq-emb-Fin zero-ℕ (succ-ℕ l) f = leq-zero-ℕ (succ-ℕ l)
leq-emb-Fin (succ-ℕ k) (succ-ℕ l) f = leq-emb-Fin k l (reduce-emb-Fin k l f)

leq-is-emb-Fin :
  (k l : ) {f : Fin k  Fin l}  is-emb f  k ≤-ℕ l
leq-is-emb-Fin k l {f = f} H = leq-emb-Fin k l (pair f H)

Given an injective map Fin k → Fin l, it follows that k ≤ l

leq-is-injective-Fin :
  (k l : ) {f : Fin k  Fin l}  is-injective f  k ≤-ℕ l
leq-is-injective-Fin k l H =
  leq-is-emb-Fin k l (is-emb-is-injective (is-set-Fin l) H)

If l < k, then any map f : Fin k → Fin l is not an embedding

is-not-emb-le-Fin :
  (k l : ) (f : Fin k  Fin l)  le-ℕ l k  ¬ (is-emb f)
is-not-emb-le-Fin k l f p =
  map-neg (leq-is-emb-Fin k l) (contradiction-le-ℕ l k p)

If l < k, then any map f : Fin k → Fin l is not injective

is-not-injective-le-Fin :
  (k l : ) (f : Fin k  Fin l)  le-ℕ l k  is-not-injective f
is-not-injective-le-Fin k l f p =
  map-neg (is-emb-is-injective (is-set-Fin l)) (is-not-emb-le-Fin k l f p)

There is no injective map Fin (k + 1) → Fin k

is-not-injective-map-Fin-succ-Fin :
  (k : ) (f : Fin (succ-ℕ k)  Fin k)  is-not-injective f
is-not-injective-map-Fin-succ-Fin k f =
  is-not-injective-le-Fin (succ-ℕ k) k f (succ-le-ℕ k)

There is no embedding ℕ ↪ Fin k

no-embedding-ℕ-Fin :
  (k : )  ¬ (  Fin k)
no-embedding-ℕ-Fin k e =
  contradiction-leq-ℕ k k
    ( refl-leq-ℕ k)
    ( leq-emb-Fin (succ-ℕ k) k (comp-emb e (emb-nat-Fin (succ-ℕ k))))

For any f : Fin k → Fin l, where l < k, we construct a pair of distinct elements of Fin k on which f assumes the same value

module _
  (k l : ) (f : Fin k  Fin l) (p : le-ℕ l k)
  where

  repetition-of-values-le-Fin : repetition-of-values f
  repetition-of-values-le-Fin =
    repetition-of-values-is-not-injective-Fin k l f
      ( is-not-injective-le-Fin k l f p)

  pair-of-distinct-elements-repetition-of-values-le-Fin :
    pair-of-distinct-elements (Fin k)
  pair-of-distinct-elements-repetition-of-values-le-Fin =
    pr1 repetition-of-values-le-Fin

  first-repetition-of-values-le-Fin : Fin k
  first-repetition-of-values-le-Fin =
    first-pair-of-distinct-elements
      pair-of-distinct-elements-repetition-of-values-le-Fin

  second-repetition-of-values-le-Fin : Fin k
  second-repetition-of-values-le-Fin =
    second-pair-of-distinct-elements
      pair-of-distinct-elements-repetition-of-values-le-Fin

  distinction-repetition-of-values-le-Fin :
    first-repetition-of-values-le-Fin  second-repetition-of-values-le-Fin
  distinction-repetition-of-values-le-Fin =
    distinction-pair-of-distinct-elements
      pair-of-distinct-elements-repetition-of-values-le-Fin

  is-repetition-of-values-repetition-of-values-le-Fin :
    is-repetition-of-values f
      pair-of-distinct-elements-repetition-of-values-le-Fin
  is-repetition-of-values-repetition-of-values-le-Fin =
    is-repetition-of-values-repetition-of-values f
      repetition-of-values-le-Fin

repetition-of-values-Fin-succ-to-Fin :
  (k : ) (f : Fin (succ-ℕ k)  Fin k)  repetition-of-values f
repetition-of-values-Fin-succ-to-Fin k f =
  repetition-of-values-le-Fin (succ-ℕ k) k f (succ-le-ℕ k)

The pigeonhole principle for types equipped with a counting

module _
  {l1 l2 : Level} {A : UU l1} {B : UU l2} (eA : count A) (eB : count B)
  where

If f : A ↪ B is an embedding between types equipped with a counting, then the number of elements of A is less than the number of elements of B

  leq-emb-count :
    (A  B)  (number-of-elements-count eA) ≤-ℕ (number-of-elements-count eB)
  leq-emb-count f =
    leq-emb-Fin
      ( number-of-elements-count eA)
      ( number-of-elements-count eB)
      ( comp-emb
        ( comp-emb (emb-equiv (inv-equiv-count eB)) f)
        ( emb-equiv (equiv-count eA)))

  leq-is-emb-count :
    {f : A  B}  is-emb f 
    (number-of-elements-count eA) ≤-ℕ (number-of-elements-count eB)
  leq-is-emb-count {f} H = leq-emb-count (pair f H)

If f : A → B is an injective map between types equipped with a counting, then the number of elements of A is less than the number of elements of B

  leq-is-injective-count :
    {f : A  B}  is-injective f 
    (number-of-elements-count eA) ≤-ℕ (number-of-elements-count eB)
  leq-is-injective-count H =
    leq-is-emb-count (is-emb-is-injective (is-set-count eB) H)

There is no embedding A ↪ B between types equipped with a counting if the number of elements of B is strictly less than the number of elements of A

  is-not-emb-le-count :
    (f : A  B) 
    le-ℕ (number-of-elements-count eB) (number-of-elements-count eA) 
    ¬ (is-emb f)
  is-not-emb-le-count f p H =
    is-not-emb-le-Fin
      ( number-of-elements-count eA)
      ( number-of-elements-count eB)
      ( map-emb h)
      ( p)
      ( is-emb-map-emb h)
    where
    h : Fin (number-of-elements-count eA)  Fin (number-of-elements-count eB)
    h = comp-emb
        ( emb-equiv (inv-equiv-count eB))
          ( comp-emb (pair f H) (emb-equiv (equiv-count eA)))

There is no injective map A → B between types equipped with a counting if the number of elements of B is strictly less than the number of elements of A

  is-not-injective-le-count :
    (f : A  B) 
    le-ℕ (number-of-elements-count eB) (number-of-elements-count eA) 
    is-not-injective f
  is-not-injective-le-count f p H =
    is-not-emb-le-count f p (is-emb-is-injective (is-set-count eB) H)

There is no embedding ℕ ↪ A into a type equipped with a counting

no-embedding-ℕ-count :
  {l : Level} {A : UU l} (e : count A)  ¬ (  A)
no-embedding-ℕ-count e f =
  no-embedding-ℕ-Fin
  ( number-of-elements-count e)
  ( comp-emb (emb-equiv (inv-equiv-count e)) f)

For any map f : A → B between types equipped with a counting, if |A| < |B| then we construct a pair of distinct elements of A on which f assumes the same value

module _
  {l1 l2 : Level} {A : UU l1} {B : UU l2} (eA : count A) (eB : count B)
  (f : A  B)
  (p : le-ℕ (number-of-elements-count eB) (number-of-elements-count eA))
  where

  repetition-of-values-le-count : repetition-of-values f
  repetition-of-values-le-count =
    map-equiv-repetition-of-values
      ( (map-inv-equiv-count eB  f)  (map-equiv-count eA))
      ( f)
      ( equiv-count eA)
      ( equiv-count eB)
      ( is-section-map-inv-equiv-count eB ·r (f  (map-equiv-count eA)))
      ( repetition-of-values-le-Fin
        ( number-of-elements-count eA)
        ( number-of-elements-count eB)
        ( (map-inv-equiv-count eB  f)  (map-equiv-count eA))
        ( p))

  pair-of-distinct-elements-repetition-of-values-le-count :
    pair-of-distinct-elements A
  pair-of-distinct-elements-repetition-of-values-le-count =
    pr1 repetition-of-values-le-count

  first-repetition-of-values-le-count : A
  first-repetition-of-values-le-count =
    first-pair-of-distinct-elements
      pair-of-distinct-elements-repetition-of-values-le-count

  second-repetition-of-values-le-count : A
  second-repetition-of-values-le-count =
    second-pair-of-distinct-elements
      pair-of-distinct-elements-repetition-of-values-le-count

  distinction-repetition-of-values-le-count :
    first-repetition-of-values-le-count  second-repetition-of-values-le-count
  distinction-repetition-of-values-le-count =
    distinction-pair-of-distinct-elements
      pair-of-distinct-elements-repetition-of-values-le-count

  is-repetition-of-values-repetition-of-values-le-count :
    is-repetition-of-values f
      pair-of-distinct-elements-repetition-of-values-le-count
  is-repetition-of-values-repetition-of-values-le-count =
    is-repetition-of-values-repetition-of-values f
      repetition-of-values-le-count

The pigeonhole principle for finite types

module _
  {l1 l2 : Level} {A : UU l1} {B : UU l2} (H : is-finite A) (K : is-finite B)
  where

If A ↪ B is an embedding between finite types, then |A| ≤ |B|

  leq-emb-is-finite :
    (A  B) 
    (number-of-elements-is-finite H) ≤-ℕ (number-of-elements-is-finite K)
  leq-emb-is-finite f =
    apply-universal-property-trunc-Prop H P
      ( λ eA 
        apply-universal-property-trunc-Prop K P
          ( λ eB 
            concatenate-eq-leq-eq-ℕ
              ( inv (compute-number-of-elements-is-finite eA H))
              ( leq-emb-count eA eB f)
              ( compute-number-of-elements-is-finite eB K)))
    where
    P : Prop lzero
    P = leq-ℕ-Prop
        ( number-of-elements-is-finite H)
          ( number-of-elements-is-finite K)

  leq-is-emb-is-finite :
    {f : A  B}  is-emb f 
    (number-of-elements-is-finite H) ≤-ℕ (number-of-elements-is-finite K)
  leq-is-emb-is-finite {f} H =
    leq-emb-is-finite (pair f H)

If A → B is an injective map between finite types, then |A| ≤ |B|

  leq-is-injective-is-finite :
    {f : A  B}  is-injective f 
    (number-of-elements-is-finite H) ≤-ℕ (number-of-elements-is-finite K)
  leq-is-injective-is-finite I =
    leq-is-emb-is-finite (is-emb-is-injective (is-set-is-finite K) I)

There are no embeddings between finite types A and B such that `|B| < |A|

  is-not-emb-le-is-finite :
    (f : A  B) 
    le-ℕ (number-of-elements-is-finite K) (number-of-elements-is-finite H) 
    ¬ (is-emb f)
  is-not-emb-le-is-finite f p E =
    apply-universal-property-trunc-Prop H empty-Prop
      ( λ e 
        apply-universal-property-trunc-Prop K empty-Prop
          ( λ d  is-not-emb-le-count e d f
            ( concatenate-eq-le-eq-ℕ
              ( compute-number-of-elements-is-finite d K)
              ( p)
              ( inv (compute-number-of-elements-is-finite e H)))
            ( E)))

There are no injective maps between finite types A and B such that `|B| < |A|

  is-not-injective-le-is-finite :
    (f : A  B) 
    le-ℕ (number-of-elements-is-finite K) (number-of-elements-is-finite H) 
    is-not-injective f
  is-not-injective-le-is-finite f p I =
    is-not-emb-le-is-finite f p (is-emb-is-injective (is-set-is-finite K) I)

There are no embeddings ℕ ↪ A into a finite type A

no-embedding-ℕ-is-finite :
  {l : Level} {A : UU l} (H : is-finite A)  ¬ (  A)
no-embedding-ℕ-is-finite H f =
  apply-universal-property-trunc-Prop H empty-Prop
    ( λ e  no-embedding-ℕ-count e f)

Recent changes