Strictly inflationary maps on a strictly preordered type

Content created by Egbert Rijke.

Created on 2025-02-09.
Last modified on 2025-02-09.

module order-theory.strictly-inflationary-maps-strict-preorders where
Imports
open import foundation.dependent-pair-types
open import foundation.propositions
open import foundation.subtypes
open import foundation.universe-levels

open import order-theory.strict-order-preserving-maps
open import order-theory.strict-preorders

Idea

A map on a strict preorder is said to be a strictly inflationary map if the inequality

holds for any element . If is also order preserving we say that is a strictly inflationary morphism.

Definitions

The predicate of being a strictly inflationary map

module _
  {l1 l2 : Level} (P : Strict-Preorder l1 l2)
  (f : type-Strict-Preorder P  type-Strict-Preorder P)
  where

  is-strictly-inflationary-map-prop-Strict-Preorder :
    Prop (l1  l2)
  is-strictly-inflationary-map-prop-Strict-Preorder =
    Π-Prop
      ( type-Strict-Preorder P)
      ( λ x  le-prop-Strict-Preorder P x (f x))

  is-strictly-inflationary-map-Strict-Preorder :
    UU (l1  l2)
  is-strictly-inflationary-map-Strict-Preorder =
    type-Prop is-strictly-inflationary-map-prop-Strict-Preorder

  is-prop-is-strictly-inflationary-map-Strict-Preorder :
    is-prop is-strictly-inflationary-map-Strict-Preorder
  is-prop-is-strictly-inflationary-map-Strict-Preorder =
    is-prop-type-Prop is-strictly-inflationary-map-prop-Strict-Preorder

The type of inflationary maps on a strict preorder

module _
  {l1 l2 : Level} (P : Strict-Preorder l1 l2)
  where

  strictly-inflationary-map-Strict-Preorder :
    UU (l1  l2)
  strictly-inflationary-map-Strict-Preorder =
    type-subtype (is-strictly-inflationary-map-prop-Strict-Preorder P)

module _
  {l1 l2 : Level} (P : Strict-Preorder l1 l2)
  (f : strictly-inflationary-map-Strict-Preorder P)
  where

  map-strictly-inflationary-map-Strict-Preorder :
    type-Strict-Preorder P  type-Strict-Preorder P
  map-strictly-inflationary-map-Strict-Preorder =
    pr1 f

  is-inflationary-strictly-inflationary-map-Strict-Preorder :
    is-strictly-inflationary-map-Strict-Preorder P
      ( map-strictly-inflationary-map-Strict-Preorder)
  is-inflationary-strictly-inflationary-map-Strict-Preorder =
    pr2 f

The predicate on order preserving maps of being inflationary

module _
  {l1 l2 : Level} (P : Strict-Preorder l1 l2)
  (f : hom-Strict-Preorder P P)
  where

  is-inflationary-prop-hom-Strict-Preorder :
    Prop (l1  l2)
  is-inflationary-prop-hom-Strict-Preorder =
    is-strictly-inflationary-map-prop-Strict-Preorder P
      ( map-hom-Strict-Preorder P P f)

  is-inflationary-hom-Strict-Preorder :
    UU (l1  l2)
  is-inflationary-hom-Strict-Preorder =
    is-strictly-inflationary-map-Strict-Preorder P
      ( map-hom-Strict-Preorder P P f)

  is-prop-is-inflationary-hom-Strict-Preorder :
    is-prop is-inflationary-hom-Strict-Preorder
  is-prop-is-inflationary-hom-Strict-Preorder =
    is-prop-is-strictly-inflationary-map-Strict-Preorder P
      ( map-hom-Strict-Preorder P P f)

The type of inflationary morphisms on a strict preorder

module _
  {l1 l2 : Level} (P : Strict-Preorder l1 l2)
  where

  inflationary-hom-Strict-Preorder :
    UU (l1  l2)
  inflationary-hom-Strict-Preorder =
    type-subtype (is-inflationary-prop-hom-Strict-Preorder P)

module _
  {l1 l2 : Level} (P : Strict-Preorder l1 l2)
  (f : inflationary-hom-Strict-Preorder P)
  where

  hom-inflationary-hom-Strict-Preorder :
    hom-Strict-Preorder P P
  hom-inflationary-hom-Strict-Preorder =
    pr1 f

  map-inflationary-hom-Strict-Preorder :
    type-Strict-Preorder P  type-Strict-Preorder P
  map-inflationary-hom-Strict-Preorder =
    map-hom-Strict-Preorder P P
      ( hom-inflationary-hom-Strict-Preorder)

  preserves-order-inflationary-hom-Strict-Preorder :
    preserves-strict-order-map-Strict-Preorder P P
      ( map-inflationary-hom-Strict-Preorder)
  preserves-order-inflationary-hom-Strict-Preorder =
    preserves-strict-order-hom-Strict-Preorder P P
      ( hom-inflationary-hom-Strict-Preorder)

  is-inflationary-inflationary-hom-Strict-Preorder :
    is-strictly-inflationary-map-Strict-Preorder P
      ( map-inflationary-hom-Strict-Preorder)
  is-inflationary-inflationary-hom-Strict-Preorder =
    pr2 f

  inflationary-map-inflationary-hom-Strict-Preorder :
    strictly-inflationary-map-Strict-Preorder P
  pr1 inflationary-map-inflationary-hom-Strict-Preorder =
    map-inflationary-hom-Strict-Preorder
  pr2 inflationary-map-inflationary-hom-Strict-Preorder =
    is-inflationary-inflationary-hom-Strict-Preorder

Recent changes