Strictly inflationary maps on a strictly preordered type
Content created by Egbert Rijke.
Created on 2025-02-09.
Last modified on 2025-02-09.
module order-theory.strictly-inflationary-maps-strict-preorders where
Imports
open import foundation.dependent-pair-types open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import order-theory.strict-order-preserving-maps open import order-theory.strict-preorders
Idea
A map on a strict preorder is said to be a strictly inflationary map¶ if the inequality
holds for any element . If is also order preserving we say that is a strictly inflationary morphism¶.
Definitions
The predicate of being a strictly inflationary map
module _ {l1 l2 : Level} (P : Strict-Preorder l1 l2) (f : type-Strict-Preorder P → type-Strict-Preorder P) where is-strictly-inflationary-map-prop-Strict-Preorder : Prop (l1 ⊔ l2) is-strictly-inflationary-map-prop-Strict-Preorder = Π-Prop ( type-Strict-Preorder P) ( λ x → le-prop-Strict-Preorder P x (f x)) is-strictly-inflationary-map-Strict-Preorder : UU (l1 ⊔ l2) is-strictly-inflationary-map-Strict-Preorder = type-Prop is-strictly-inflationary-map-prop-Strict-Preorder is-prop-is-strictly-inflationary-map-Strict-Preorder : is-prop is-strictly-inflationary-map-Strict-Preorder is-prop-is-strictly-inflationary-map-Strict-Preorder = is-prop-type-Prop is-strictly-inflationary-map-prop-Strict-Preorder
The type of inflationary maps on a strict preorder
module _ {l1 l2 : Level} (P : Strict-Preorder l1 l2) where strictly-inflationary-map-Strict-Preorder : UU (l1 ⊔ l2) strictly-inflationary-map-Strict-Preorder = type-subtype (is-strictly-inflationary-map-prop-Strict-Preorder P) module _ {l1 l2 : Level} (P : Strict-Preorder l1 l2) (f : strictly-inflationary-map-Strict-Preorder P) where map-strictly-inflationary-map-Strict-Preorder : type-Strict-Preorder P → type-Strict-Preorder P map-strictly-inflationary-map-Strict-Preorder = pr1 f is-inflationary-strictly-inflationary-map-Strict-Preorder : is-strictly-inflationary-map-Strict-Preorder P ( map-strictly-inflationary-map-Strict-Preorder) is-inflationary-strictly-inflationary-map-Strict-Preorder = pr2 f
The predicate on order preserving maps of being inflationary
module _ {l1 l2 : Level} (P : Strict-Preorder l1 l2) (f : hom-Strict-Preorder P P) where is-inflationary-prop-hom-Strict-Preorder : Prop (l1 ⊔ l2) is-inflationary-prop-hom-Strict-Preorder = is-strictly-inflationary-map-prop-Strict-Preorder P ( map-hom-Strict-Preorder P P f) is-inflationary-hom-Strict-Preorder : UU (l1 ⊔ l2) is-inflationary-hom-Strict-Preorder = is-strictly-inflationary-map-Strict-Preorder P ( map-hom-Strict-Preorder P P f) is-prop-is-inflationary-hom-Strict-Preorder : is-prop is-inflationary-hom-Strict-Preorder is-prop-is-inflationary-hom-Strict-Preorder = is-prop-is-strictly-inflationary-map-Strict-Preorder P ( map-hom-Strict-Preorder P P f)
The type of inflationary morphisms on a strict preorder
module _ {l1 l2 : Level} (P : Strict-Preorder l1 l2) where inflationary-hom-Strict-Preorder : UU (l1 ⊔ l2) inflationary-hom-Strict-Preorder = type-subtype (is-inflationary-prop-hom-Strict-Preorder P) module _ {l1 l2 : Level} (P : Strict-Preorder l1 l2) (f : inflationary-hom-Strict-Preorder P) where hom-inflationary-hom-Strict-Preorder : hom-Strict-Preorder P P hom-inflationary-hom-Strict-Preorder = pr1 f map-inflationary-hom-Strict-Preorder : type-Strict-Preorder P → type-Strict-Preorder P map-inflationary-hom-Strict-Preorder = map-hom-Strict-Preorder P P ( hom-inflationary-hom-Strict-Preorder) preserves-order-inflationary-hom-Strict-Preorder : preserves-strict-order-map-Strict-Preorder P P ( map-inflationary-hom-Strict-Preorder) preserves-order-inflationary-hom-Strict-Preorder = preserves-strict-order-hom-Strict-Preorder P P ( hom-inflationary-hom-Strict-Preorder) is-inflationary-inflationary-hom-Strict-Preorder : is-strictly-inflationary-map-Strict-Preorder P ( map-inflationary-hom-Strict-Preorder) is-inflationary-inflationary-hom-Strict-Preorder = pr2 f inflationary-map-inflationary-hom-Strict-Preorder : strictly-inflationary-map-Strict-Preorder P pr1 inflationary-map-inflationary-hom-Strict-Preorder = map-inflationary-hom-Strict-Preorder pr2 inflationary-map-inflationary-hom-Strict-Preorder = is-inflationary-inflationary-hom-Strict-Preorder
Recent changes
- 2025-02-09. Egbert Rijke. Strict preorders (#1308).