Species of types in subuniverses
Content created by Fredrik Bakke, Egbert Rijke and Victor Blanchi.
Created on 2023-04-27.
Last modified on 2023-09-11.
module species.species-of-types-in-subuniverses where
Imports
open import foundation.cartesian-product-types open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.function-types open import foundation.propositions open import foundation.subuniverses open import foundation.transport-along-identifications open import foundation.type-arithmetic-dependent-pair-types open import foundation.universe-levels open import species.species-of-types
Idea
A species of types in a subuniverse is a map from a subuniverse P
to a
subuniverse Q
.
Definitions
Species of types in subuniverses
species-subuniverse : {l1 l2 l3 l4 : Level} → subuniverse l1 l2 → subuniverse l3 l4 → UU (lsuc l1 ⊔ l2 ⊔ lsuc l3 ⊔ l4) species-subuniverse P Q = type-subuniverse P → type-subuniverse Q species-subuniverse-domain : {l1 l2 : Level} (l3 : Level) → subuniverse l1 l2 → UU (lsuc l1 ⊔ l2 ⊔ lsuc l3) species-subuniverse-domain l3 P = type-subuniverse P → UU l3
The predicate that a species preserves cartesian products
preserves-product-species-subuniverse-domain : {l1 l2 l3 : Level} (P : subuniverse l1 l2) (C : is-closed-under-products-subuniverse P) (S : species-subuniverse-domain l3 P) → UU (lsuc l1 ⊔ l2 ⊔ l3) preserves-product-species-subuniverse-domain P C S = ( X Y : type-subuniverse P) → S ( inclusion-subuniverse P X × inclusion-subuniverse P Y , C ( is-in-subuniverse-inclusion-subuniverse P X) ( is-in-subuniverse-inclusion-subuniverse P Y)) ≃ (S X × S Y)
Transport along equivalences of in species of types in subuniverses
module _ {l1 l2 l3 l4 : Level} (P : subuniverse l1 l2) (Q : subuniverse l3 l4) (F : species-subuniverse P Q) where tr-species-subuniverse : (X Y : type-subuniverse P) → inclusion-subuniverse P X ≃ inclusion-subuniverse P Y → inclusion-subuniverse Q (F X) → inclusion-subuniverse Q (F Y) tr-species-subuniverse X Y e = tr (inclusion-subuniverse Q ∘ F) (eq-equiv-subuniverse P e)
Σ-extension to species of types in subuniverses
module _ {l1 l2 l3 l4 : Level} (P : subuniverse l1 l2) (Q : subuniverse l3 l4) (F : species-subuniverse P Q) where Σ-extension-species-subuniverse : species-types l1 (l2 ⊔ l3) Σ-extension-species-subuniverse X = Σ (is-in-subuniverse P X) (λ p → inclusion-subuniverse Q (F (X , p))) equiv-Σ-extension-species-subuniverse : ( X : type-subuniverse P) → inclusion-subuniverse Q (F X) ≃ Σ-extension-species-subuniverse (inclusion-subuniverse P X) equiv-Σ-extension-species-subuniverse X = inv-left-unit-law-Σ-is-contr ( is-proof-irrelevant-is-prop ( is-subtype-subuniverse P (inclusion-subuniverse P X)) ( pr2 X)) ( pr2 X)
Σ-extension to species with domain in a subuniverse
module _ {l1 l2 l3 : Level} (P : subuniverse l1 l2) (F : species-subuniverse-domain l3 P) where Σ-extension-species-subuniverse-domain : species-types l1 (l2 ⊔ l3) Σ-extension-species-subuniverse-domain X = Σ (is-in-subuniverse P X) (λ p → (F (X , p))) equiv-Σ-extension-species-subuniverse-domain : ( X : type-subuniverse P) → F X ≃ Σ-extension-species-subuniverse-domain (inclusion-subuniverse P X) equiv-Σ-extension-species-subuniverse-domain X = inv-left-unit-law-Σ-is-contr ( is-proof-irrelevant-is-prop ( is-subtype-subuniverse P (inclusion-subuniverse P X)) ( pr2 X)) ( pr2 X)
Π-extension to species of types in subuniverses
module _ {l1 l2 l3 l4 : Level} (P : subuniverse l1 l2) (Q : subuniverse l3 l4) (S : species-subuniverse P Q) where Π-extension-species-subuniverse : species-types l1 (l2 ⊔ l3) Π-extension-species-subuniverse X = (p : is-in-subuniverse P X) → inclusion-subuniverse Q (S (X , p))
Recent changes
- 2023-09-11. Fredrik Bakke. Transport along and action on equivalences (#706).
- 2023-06-24. Fredrik Bakke. Whitespace after closing braces and before opening braces (#671).
- 2023-06-10. Egbert Rijke. cleaning up transport and dependent identifications files (#650).
- 2023-06-10. Egbert Rijke and Fredrik Bakke. Cleaning up synthetic homotopy theory (#649).
- 2023-06-08. Victor Blanchi, Fredrik Bakke and Egbert Rijke. Product of Dirichlet series (#643).