The metric space of isometries between metric spaces
Content created by Fredrik Bakke, Louis Wasserman and malarbol.
Created on 2025-05-05.
Last modified on 2026-01-01.
module metric-spaces.metric-space-of-isometries-metric-spaces where
Imports
open import foundation.universe-levels open import metric-spaces.isometries-metric-spaces open import metric-spaces.metric-space-of-maps-metric-spaces open import metric-spaces.metric-spaces open import metric-spaces.subspaces-metric-spaces
Idea
Isometries between metric spaces inherit the metric subspace structure of the function metric space. This defines the metric space of isometries between metric spaces¶.
Definitions
The metric space of isometries between metric spaces
module _ {l1 l2 l1' l2' : Level} (A : Metric-Space l1 l2) (B : Metric-Space l1' l2') where metric-space-of-isometries-Metric-Space : Metric-Space (l1 ⊔ l2 ⊔ l1' ⊔ l2') (l1 ⊔ l2') metric-space-of-isometries-Metric-Space = subspace-Metric-Space ( metric-space-of-maps-Metric-Space A B) ( is-isometry-prop-Metric-Space A B)
Recent changes
- 2026-01-01. Louis Wasserman and Fredrik Bakke. Use map terminology consistently in metric spaces (#1778).
- 2025-05-05. malarbol. Metric properties of real negation, absolute value, addition and maximum (#1398).