The metric space of Cauchy approximations in a complete metric space

Content created by malarbol.

Created on 2025-05-01.
Last modified on 2025-05-01.

module metric-spaces.metric-space-of-cauchy-approximations-complete-metric-spaces where
Imports
open import elementary-number-theory.positive-rational-numbers

open import foundation.dependent-pair-types
open import foundation.function-types
open import foundation.identity-types
open import foundation.universe-levels

open import metric-spaces.cauchy-approximations-metric-spaces
open import metric-spaces.complete-metric-spaces
open import metric-spaces.dependent-products-metric-spaces
open import metric-spaces.equality-of-metric-spaces
open import metric-spaces.isometries-metric-spaces
open import metric-spaces.metric-space-of-cauchy-approximations-metric-spaces
open import metric-spaces.metric-space-of-convergent-cauchy-approximations-metric-spaces
open import metric-spaces.metric-spaces
open import metric-spaces.short-functions-metric-spaces

Idea

The type of Cauchy approximations in a complete metric space A inherits the metric structure of the Cauchy approximations in the underlying metric space; this is the metric space of Cauchy approximations in a complete metric space.

All Cauchy approximations in a complete metric space are convergent and the corresponding map into the metric space of convergent Cauchy approximations is an isometry.

Definitions

The metric space of Cauchy approximations in a complete metric space

module _
  {l1 l2 : Level} (A : Complete-Metric-Space l1 l2)
  where

  metric-space-of-cauchy-approximations-Complete-Metric-Space :
    Metric-Space (l1  l2) l2
  metric-space-of-cauchy-approximations-Complete-Metric-Space =
    metric-space-of-cauchy-approximations-Metric-Space
      ( metric-space-Complete-Metric-Space A)

Properties

The map from a Cauchy approximation in a metric space to its convergent approximation is an isometry

module _
  {l1 l2 : Level} (A : Complete-Metric-Space l1 l2)
  where

  is-isometry-convergent-cauchy-approximation-Complete-Metric-Space :
    is-isometry-Metric-Space
      ( metric-space-of-cauchy-approximations-Complete-Metric-Space A)
      ( metric-space-of-convergent-cauchy-approximations-Metric-Space
        ( metric-space-Complete-Metric-Space A))
      ( convergent-cauchy-approximation-Complete-Metric-Space A)
  is-isometry-convergent-cauchy-approximation-Complete-Metric-Space d x y =
    (id , id)

  isometry-convergent-cauchy-approximation-Complete-Metric-Space :
    isometry-Metric-Space
      ( metric-space-of-cauchy-approximations-Complete-Metric-Space A)
      ( metric-space-of-convergent-cauchy-approximations-Metric-Space
        ( metric-space-Complete-Metric-Space A))
  isometry-convergent-cauchy-approximation-Complete-Metric-Space =
    convergent-cauchy-approximation-Complete-Metric-Space A ,
    is-isometry-convergent-cauchy-approximation-Complete-Metric-Space

The metric space of Cauchy approximations in a complete metric space is equal to the metric space of convergent Cauchy approximations in its underlying metric space

module _
  {l1 l2 : Level} (A : Complete-Metric-Space l1 l2)
  where

  eq-metric-space-convergent-cauchy-approximations-Complete-Metric-Space :
    ( metric-space-of-cauchy-approximations-Complete-Metric-Space A) 
    ( metric-space-of-convergent-cauchy-approximations-Metric-Space
      ( metric-space-Complete-Metric-Space A))
  eq-metric-space-convergent-cauchy-approximations-Complete-Metric-Space =
    eq-isometric-equiv-Metric-Space'
      ( metric-space-of-cauchy-approximations-Complete-Metric-Space A)
      ( metric-space-of-convergent-cauchy-approximations-Metric-Space
        ( metric-space-Complete-Metric-Space A))
      ( convergent-cauchy-approximation-Complete-Metric-Space A ,
        is-equiv-convergent-cauchy-approximation-Complete-Metric-Space A ,
        is-isometry-convergent-cauchy-approximation-Complete-Metric-Space A)

The map from a Cauchy approximation in a metric space to its convergent approximation is short

module _
  {l1 l2 : Level} (A : Complete-Metric-Space l1 l2)
  where

  short-convergent-cauchy-approximation-Complete-Metric-Space :
    short-function-Metric-Space
      ( metric-space-of-cauchy-approximations-Complete-Metric-Space A)
      ( metric-space-of-convergent-cauchy-approximations-Metric-Space
        ( metric-space-Complete-Metric-Space A))
  short-convergent-cauchy-approximation-Complete-Metric-Space =
    short-isometry-Metric-Space
      ( metric-space-of-cauchy-approximations-Complete-Metric-Space A)
      ( metric-space-of-convergent-cauchy-approximations-Metric-Space
        ( metric-space-Complete-Metric-Space A))
      ( isometry-convergent-cauchy-approximation-Complete-Metric-Space A)

  is-short-convergent-cauchy-approximation-Complete-Metric-Space :
    is-short-function-Metric-Space
      ( metric-space-of-cauchy-approximations-Complete-Metric-Space A)
      ( metric-space-of-convergent-cauchy-approximations-Metric-Space
        ( metric-space-Complete-Metric-Space A))
      ( convergent-cauchy-approximation-Complete-Metric-Space A)
  is-short-convergent-cauchy-approximation-Complete-Metric-Space =
    is-short-map-short-function-Metric-Space
      ( metric-space-of-cauchy-approximations-Complete-Metric-Space A)
      ( metric-space-of-convergent-cauchy-approximations-Metric-Space
        ( metric-space-Complete-Metric-Space A))
      ( short-convergent-cauchy-approximation-Complete-Metric-Space)

Recent changes