The metric space of Cauchy approximations in a complete metric space
Content created by malarbol and Louis Wasserman.
Created on 2025-05-01.
Last modified on 2025-08-18.
module metric-spaces.metric-space-of-cauchy-approximations-complete-metric-spaces where
Imports
open import elementary-number-theory.positive-rational-numbers open import foundation.dependent-pair-types open import foundation.function-types open import foundation.identity-types open import foundation.logical-equivalences open import foundation.propositional-truncations open import foundation.universe-levels open import metric-spaces.cauchy-approximations-metric-spaces open import metric-spaces.complete-metric-spaces open import metric-spaces.convergent-cauchy-approximations-metric-spaces open import metric-spaces.dependent-products-metric-spaces open import metric-spaces.equality-of-metric-spaces open import metric-spaces.isometries-metric-spaces open import metric-spaces.limits-of-cauchy-approximations-metric-spaces open import metric-spaces.metric-space-of-cauchy-approximations-metric-spaces open import metric-spaces.metric-space-of-convergent-cauchy-approximations-metric-spaces open import metric-spaces.metric-spaces open import metric-spaces.short-functions-metric-spaces
Idea
The type of
Cauchy approximations in
a complete metric space A
inherits
the
metric structure
of the Cauchy approximations in the underlying metric space; this is the
metric space of Cauchy approximations¶
in a complete metric space.
All Cauchy approximations in a complete metric space are convergent and the corresponding map into the metric space of convergent Cauchy approximations is an isometry.
Definitions
The metric space of Cauchy approximations in a complete metric space
module _ {l1 l2 : Level} (A : Complete-Metric-Space l1 l2) where metric-space-of-cauchy-approximations-Complete-Metric-Space : Metric-Space (l1 ⊔ l2) l2 metric-space-of-cauchy-approximations-Complete-Metric-Space = metric-space-of-cauchy-approximations-Metric-Space ( metric-space-Complete-Metric-Space A)
Properties
The map from a Cauchy approximation in a metric space to its convergent approximation is an isometry
module _ {l1 l2 : Level} (A : Complete-Metric-Space l1 l2) where is-isometry-convergent-cauchy-approximation-Complete-Metric-Space : is-isometry-Metric-Space ( metric-space-of-cauchy-approximations-Complete-Metric-Space A) ( metric-space-of-convergent-cauchy-approximations-Metric-Space ( metric-space-Complete-Metric-Space A)) ( convergent-cauchy-approximation-Complete-Metric-Space A) is-isometry-convergent-cauchy-approximation-Complete-Metric-Space d x y = (id , id) isometry-convergent-cauchy-approximation-Complete-Metric-Space : isometry-Metric-Space ( metric-space-of-cauchy-approximations-Complete-Metric-Space A) ( metric-space-of-convergent-cauchy-approximations-Metric-Space ( metric-space-Complete-Metric-Space A)) isometry-convergent-cauchy-approximation-Complete-Metric-Space = convergent-cauchy-approximation-Complete-Metric-Space A , is-isometry-convergent-cauchy-approximation-Complete-Metric-Space
The metric space of Cauchy approximations in a complete metric space is equal to the metric space of convergent Cauchy approximations in its underlying metric space
module _ {l1 l2 : Level} (A : Complete-Metric-Space l1 l2) where eq-metric-space-convergent-cauchy-approximations-Complete-Metric-Space : ( metric-space-of-cauchy-approximations-Complete-Metric-Space A) = ( metric-space-of-convergent-cauchy-approximations-Metric-Space ( metric-space-Complete-Metric-Space A)) eq-metric-space-convergent-cauchy-approximations-Complete-Metric-Space = eq-isometric-equiv-Metric-Space' ( metric-space-of-cauchy-approximations-Complete-Metric-Space A) ( metric-space-of-convergent-cauchy-approximations-Metric-Space ( metric-space-Complete-Metric-Space A)) ( convergent-cauchy-approximation-Complete-Metric-Space A , is-equiv-convergent-cauchy-approximation-Complete-Metric-Space A , is-isometry-convergent-cauchy-approximation-Complete-Metric-Space A)
The map from a Cauchy approximation in a metric space to its convergent approximation is short
module _ {l1 l2 : Level} (A : Complete-Metric-Space l1 l2) where short-convergent-cauchy-approximation-Complete-Metric-Space : short-function-Metric-Space ( metric-space-of-cauchy-approximations-Complete-Metric-Space A) ( metric-space-of-convergent-cauchy-approximations-Metric-Space ( metric-space-Complete-Metric-Space A)) short-convergent-cauchy-approximation-Complete-Metric-Space = short-isometry-Metric-Space ( metric-space-of-cauchy-approximations-Complete-Metric-Space A) ( metric-space-of-convergent-cauchy-approximations-Metric-Space ( metric-space-Complete-Metric-Space A)) ( isometry-convergent-cauchy-approximation-Complete-Metric-Space A) is-short-convergent-cauchy-approximation-Complete-Metric-Space : is-short-function-Metric-Space ( metric-space-of-cauchy-approximations-Complete-Metric-Space A) ( metric-space-of-convergent-cauchy-approximations-Metric-Space ( metric-space-Complete-Metric-Space A)) ( convergent-cauchy-approximation-Complete-Metric-Space A) is-short-convergent-cauchy-approximation-Complete-Metric-Space = is-short-map-short-function-Metric-Space ( metric-space-of-cauchy-approximations-Complete-Metric-Space A) ( metric-space-of-convergent-cauchy-approximations-Metric-Space ( metric-space-Complete-Metric-Space A)) ( short-convergent-cauchy-approximation-Complete-Metric-Space)
The map from a Cauchy approximation in a complete metric space to its limit is short
module _ {l1 l2 : Level} (A : Complete-Metric-Space l1 l2) where short-limit-cauchy-approximation-Complete-Metric-Space : short-function-Metric-Space ( metric-space-of-cauchy-approximations-Complete-Metric-Space A) ( metric-space-Complete-Metric-Space A) short-limit-cauchy-approximation-Complete-Metric-Space = comp-short-function-Metric-Space ( metric-space-of-cauchy-approximations-Complete-Metric-Space A) ( metric-space-of-convergent-cauchy-approximations-Metric-Space ( metric-space-Complete-Metric-Space A)) ( metric-space-Complete-Metric-Space A) ( short-limit-convergent-cauchy-approximation-Metric-Space ( metric-space-Complete-Metric-Space A)) ( short-convergent-cauchy-approximation-Complete-Metric-Space A) is-short-limit-cauchy-approximation-Complete-Metric-Space : is-short-function-Metric-Space ( metric-space-of-cauchy-approximations-Complete-Metric-Space A) ( metric-space-Complete-Metric-Space A) ( limit-cauchy-approximation-Complete-Metric-Space A) is-short-limit-cauchy-approximation-Complete-Metric-Space = is-short-map-short-function-Metric-Space ( metric-space-of-cauchy-approximations-Complete-Metric-Space A) ( metric-space-Complete-Metric-Space A) ( short-limit-cauchy-approximation-Complete-Metric-Space)
The metric space of Cauchy approximations in a complete metric space is complete
Given a Cauchy approximation of Cauchy approximations U : ℚ⁺ → ℚ⁺ → A
in a
complete metric space A
, we construct its limit as follows:
- for any
η : ℚ⁺
, the partial applicationε ↦ U ε η
is a Cauchy approximation inA
; - since
A
is complete, it converges to somelim-η : A
; - the assignment
η ↦ lim-η
is a Cauchy approximation inA
; - by construction it’s a limit of
U
in the space of Cauchy approximations.
module _ {l1 l2 : Level} (A : Complete-Metric-Space l1 l2) (U : cauchy-approximation-Metric-Space ( metric-space-of-cauchy-approximations-Complete-Metric-Space A)) where map-lim-cauchy-approximation-cauchy-approximations-Complete-Metric-Space : ℚ⁺ → type-Complete-Metric-Space A map-lim-cauchy-approximation-cauchy-approximations-Complete-Metric-Space η = limit-cauchy-approximation-Complete-Metric-Space ( A) ( map-swap-cauchy-approximation-Metric-Space ( metric-space-Complete-Metric-Space A) ( U) ( η)) is-cauchy-map-lim-cauchy-approximation-cauchy-approximations-Complete-Metric-Space : is-cauchy-approximation-Metric-Space ( metric-space-Complete-Metric-Space A) ( map-lim-cauchy-approximation-cauchy-approximations-Complete-Metric-Space) is-cauchy-map-lim-cauchy-approximation-cauchy-approximations-Complete-Metric-Space ε δ = is-short-limit-cauchy-approximation-Complete-Metric-Space ( A) ( ε +ℚ⁺ δ) ( map-swap-cauchy-approximation-Metric-Space ( metric-space-Complete-Metric-Space A) ( U) ( ε)) ( map-swap-cauchy-approximation-Metric-Space ( metric-space-Complete-Metric-Space A) ( U) ( δ)) ( λ η → is-cauchy-approximation-map-cauchy-approximation-Metric-Space ( metric-space-Complete-Metric-Space A) ( map-cauchy-approximation-Metric-Space ( metric-space-of-cauchy-approximations-Complete-Metric-Space ( A)) ( U) ( η)) ( ε) ( δ)) lim-cauchy-approximation-cauchy-approximations-Complete-Metric-Space : cauchy-approximation-Metric-Space (metric-space-Complete-Metric-Space A) lim-cauchy-approximation-cauchy-approximations-Complete-Metric-Space = map-lim-cauchy-approximation-cauchy-approximations-Complete-Metric-Space , is-cauchy-map-lim-cauchy-approximation-cauchy-approximations-Complete-Metric-Space is-limit-lim-cauchy-approximation-cauchy-approximations-Complete-Metric-Space : is-limit-cauchy-approximation-Metric-Space ( metric-space-of-cauchy-approximations-Complete-Metric-Space ( A)) ( U) ( lim-cauchy-approximation-cauchy-approximations-Complete-Metric-Space) is-limit-lim-cauchy-approximation-cauchy-approximations-Complete-Metric-Space ε δ η = is-limit-limit-cauchy-approximation-Complete-Metric-Space ( A) ( map-swap-cauchy-approximation-Metric-Space ( metric-space-Complete-Metric-Space A) ( U) ( η)) ( ε) ( δ) module _ {l1 l2 : Level} (A : Complete-Metric-Space l1 l2) where is-complete-metric-space-of-cauchy-approximations-Complete-Metric-Space : is-complete-Metric-Space ( metric-space-of-cauchy-approximations-Complete-Metric-Space A) is-complete-metric-space-of-cauchy-approximations-Complete-Metric-Space U = ( lim-cauchy-approximation-cauchy-approximations-Complete-Metric-Space ( A) ( U)) , ( is-limit-lim-cauchy-approximation-cauchy-approximations-Complete-Metric-Space ( A) ( U))
The complete metric space of Cauchy approximations in a complete metric space
module _ {l1 l2 : Level} (A : Complete-Metric-Space l1 l2) where complete-metric-space-of-cauchy-approximations-Complete-Metric-Space : Complete-Metric-Space (l1 ⊔ l2) l2 complete-metric-space-of-cauchy-approximations-Complete-Metric-Space = ( metric-space-of-cauchy-approximations-Complete-Metric-Space A) , ( is-complete-metric-space-of-cauchy-approximations-Complete-Metric-Space A)
A metric space is complete if and only if its metric space of Cauchy approximations is complete
module _ {l1 l2 : Level} (A : Metric-Space l1 l2) where is-complete-is-complete-metric-space-of-cauchy-approximations-Metric-Space : is-complete-Metric-Space ( metric-space-of-cauchy-approximations-Metric-Space A) → is-complete-Metric-Space A is-complete-is-complete-metric-space-of-cauchy-approximations-Metric-Space H f = rec-trunc-Prop ( is-convergent-prop-cauchy-approximation-Metric-Space A f) ( λ d → ( map-cauchy-approximation-Metric-Space A lim-const-map-f d) , ( is-lim-f-lim-const-map-f d)) ( is-inhabited-ℚ⁺) where const-map-f : ℚ⁺ → cauchy-approximation-Metric-Space A const-map-f = ( const-cauchy-approximation-Metric-Space A) ∘ ( map-cauchy-approximation-Metric-Space A f) is-cauchy-const-map-f : is-cauchy-approximation-Metric-Space ( metric-space-of-cauchy-approximations-Metric-Space A) ( const-map-f) is-cauchy-const-map-f ε δ d = is-cauchy-approximation-map-cauchy-approximation-Metric-Space ( A) ( f) ( ε) ( δ) lim-const-map-f : cauchy-approximation-Metric-Space A lim-const-map-f = limit-cauchy-approximation-Complete-Metric-Space ( metric-space-of-cauchy-approximations-Metric-Space A , H) ( const-map-f , is-cauchy-const-map-f) is-lim-f-lim-const-map-f : (d : ℚ⁺) → is-limit-cauchy-approximation-Metric-Space ( A) ( f) ( map-cauchy-approximation-Metric-Space A lim-const-map-f d) is-lim-f-lim-const-map-f d ε δ = is-limit-limit-cauchy-approximation-Complete-Metric-Space ( metric-space-of-cauchy-approximations-Metric-Space A , H) ( const-map-f , is-cauchy-const-map-f) ( ε) ( δ) ( d) iff-is-complete-is-complete-metric-space-of-cauchy-approximations-Metric-Space : is-complete-Metric-Space ( metric-space-of-cauchy-approximations-Metric-Space A) ↔ is-complete-Metric-Space A iff-is-complete-is-complete-metric-space-of-cauchy-approximations-Metric-Space = ( is-complete-is-complete-metric-space-of-cauchy-approximations-Metric-Space) , ( is-complete-metric-space-of-cauchy-approximations-Complete-Metric-Space ∘ pair A)
Recent changes
- 2025-08-18. malarbol and Louis Wasserman. Refactor metric spaces (#1450).
- 2025-05-01. malarbol. The short map from a convergent Cauchy approximation in a saturated metric space to its limit (#1402).