The metric space of Cauchy approximations in a complete metric space
Content created by malarbol.
Created on 2025-05-01.
Last modified on 2025-05-01.
module metric-spaces.metric-space-of-cauchy-approximations-complete-metric-spaces where
Imports
open import elementary-number-theory.positive-rational-numbers open import foundation.dependent-pair-types open import foundation.function-types open import foundation.identity-types open import foundation.universe-levels open import metric-spaces.cauchy-approximations-metric-spaces open import metric-spaces.complete-metric-spaces open import metric-spaces.dependent-products-metric-spaces open import metric-spaces.equality-of-metric-spaces open import metric-spaces.isometries-metric-spaces open import metric-spaces.metric-space-of-cauchy-approximations-metric-spaces open import metric-spaces.metric-space-of-convergent-cauchy-approximations-metric-spaces open import metric-spaces.metric-spaces open import metric-spaces.short-functions-metric-spaces
Idea
The type of
Cauchy approximations in
a complete metric space A
inherits
the
metric structure
of the Cauchy approximations in the underlying metric space; this is the
metric space of Cauchy approximations¶
in a complete metric space.
All Cauchy approximations in a complete metric space are convergent and the corresponding map into the metric space of convergent Cauchy approximations is an isometry.
Definitions
The metric space of Cauchy approximations in a complete metric space
module _ {l1 l2 : Level} (A : Complete-Metric-Space l1 l2) where metric-space-of-cauchy-approximations-Complete-Metric-Space : Metric-Space (l1 ⊔ l2) l2 metric-space-of-cauchy-approximations-Complete-Metric-Space = metric-space-of-cauchy-approximations-Metric-Space ( metric-space-Complete-Metric-Space A)
Properties
The map from a Cauchy approximation in a metric space to its convergent approximation is an isometry
module _ {l1 l2 : Level} (A : Complete-Metric-Space l1 l2) where is-isometry-convergent-cauchy-approximation-Complete-Metric-Space : is-isometry-Metric-Space ( metric-space-of-cauchy-approximations-Complete-Metric-Space A) ( metric-space-of-convergent-cauchy-approximations-Metric-Space ( metric-space-Complete-Metric-Space A)) ( convergent-cauchy-approximation-Complete-Metric-Space A) is-isometry-convergent-cauchy-approximation-Complete-Metric-Space d x y = (id , id) isometry-convergent-cauchy-approximation-Complete-Metric-Space : isometry-Metric-Space ( metric-space-of-cauchy-approximations-Complete-Metric-Space A) ( metric-space-of-convergent-cauchy-approximations-Metric-Space ( metric-space-Complete-Metric-Space A)) isometry-convergent-cauchy-approximation-Complete-Metric-Space = convergent-cauchy-approximation-Complete-Metric-Space A , is-isometry-convergent-cauchy-approximation-Complete-Metric-Space
The metric space of Cauchy approximations in a complete metric space is equal to the metric space of convergent Cauchy approximations in its underlying metric space
module _ {l1 l2 : Level} (A : Complete-Metric-Space l1 l2) where eq-metric-space-convergent-cauchy-approximations-Complete-Metric-Space : ( metric-space-of-cauchy-approximations-Complete-Metric-Space A) = ( metric-space-of-convergent-cauchy-approximations-Metric-Space ( metric-space-Complete-Metric-Space A)) eq-metric-space-convergent-cauchy-approximations-Complete-Metric-Space = eq-isometric-equiv-Metric-Space' ( metric-space-of-cauchy-approximations-Complete-Metric-Space A) ( metric-space-of-convergent-cauchy-approximations-Metric-Space ( metric-space-Complete-Metric-Space A)) ( convergent-cauchy-approximation-Complete-Metric-Space A , is-equiv-convergent-cauchy-approximation-Complete-Metric-Space A , is-isometry-convergent-cauchy-approximation-Complete-Metric-Space A)
The map from a Cauchy approximation in a metric space to its convergent approximation is short
module _ {l1 l2 : Level} (A : Complete-Metric-Space l1 l2) where short-convergent-cauchy-approximation-Complete-Metric-Space : short-function-Metric-Space ( metric-space-of-cauchy-approximations-Complete-Metric-Space A) ( metric-space-of-convergent-cauchy-approximations-Metric-Space ( metric-space-Complete-Metric-Space A)) short-convergent-cauchy-approximation-Complete-Metric-Space = short-isometry-Metric-Space ( metric-space-of-cauchy-approximations-Complete-Metric-Space A) ( metric-space-of-convergent-cauchy-approximations-Metric-Space ( metric-space-Complete-Metric-Space A)) ( isometry-convergent-cauchy-approximation-Complete-Metric-Space A) is-short-convergent-cauchy-approximation-Complete-Metric-Space : is-short-function-Metric-Space ( metric-space-of-cauchy-approximations-Complete-Metric-Space A) ( metric-space-of-convergent-cauchy-approximations-Metric-Space ( metric-space-Complete-Metric-Space A)) ( convergent-cauchy-approximation-Complete-Metric-Space A) is-short-convergent-cauchy-approximation-Complete-Metric-Space = is-short-map-short-function-Metric-Space ( metric-space-of-cauchy-approximations-Complete-Metric-Space A) ( metric-space-of-convergent-cauchy-approximations-Metric-Space ( metric-space-Complete-Metric-Space A)) ( short-convergent-cauchy-approximation-Complete-Metric-Space)