Weakly anodyne maps
Content created by Fredrik Bakke.
Created on 2025-07-15.
Last modified on 2025-07-15.
module orthogonal-factorization-systems.weakly-anodyne-maps where
Imports
open import foundation.equivalences-arrows open import foundation.fibers-of-maps open import foundation.function-types open import foundation.functoriality-cartesian-product-types open import foundation.functoriality-coproduct-types open import foundation.functoriality-dependent-pair-types open import foundation.homotopies open import foundation.retracts-of-maps open import foundation.unit-type open import foundation.universe-levels open import orthogonal-factorization-systems.anodyne-maps open import orthogonal-factorization-systems.maps-local-at-maps open import orthogonal-factorization-systems.orthogonal-maps open import orthogonal-factorization-systems.types-local-at-maps open import synthetic-homotopy-theory.cocartesian-morphisms-arrows
Idea
A map is said to be weakly anodyne¶ with respect to a map , or weakly -anodyne, if every map that is local at is also local at .
Definitions
The predicate of being weakly anodyne with respect to a map
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (j : C → D) where is-weakly-anodyne-map-Level : (l5 l6 : Level) → UU (l1 ⊔ l2 ⊔ l3 ⊔ l4 ⊔ lsuc l5 ⊔ lsuc l6) is-weakly-anodyne-map-Level l5 l6 = {X : UU l5} {Y : UU l6} (g : X → Y) → is-local-map f g → is-local-map j g is-weakly-anodyne-map : UUω is-weakly-anodyne-map = {l5 l6 : Level} → is-weakly-anodyne-map-Level l5 l6
Properties
Anodyne maps are weakly anodyne
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) {j : C → D} where is-weakly-anodyne-map-is-anodyne-map : is-anodyne-map f j → is-weakly-anodyne-map f j is-weakly-anodyne-map-is-anodyne-map J g G x = is-local-is-orthogonal-terminal-map j ( J ( terminal-map (fiber g x)) ( is-orthogonal-terminal-map-is-local f (G x)))
Weakly anodyne maps are closed under retracts of maps
module _ {l1 l2 l3 l4 l5 l6 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} {C' : UU l5} {D' : UU l6} (f : A → B) {j : C → D} {j' : C' → D'} where is-weakly-anodyne-map-retract-map : retract-map j j' → is-weakly-anodyne-map f j → is-weakly-anodyne-map f j' is-weakly-anodyne-map-retract-map α J g G x = is-local-retract-map-is-local j' j α (fiber g x) (J g G x)
Recent changes
- 2025-07-15. Fredrik Bakke. Anodyne maps (#1361).