Cauchy series of species of types
Content created by Fredrik Bakke, Egbert Rijke and Victor Blanchi.
Created on 2023-04-08.
Last modified on 2025-08-30.
module species.cauchy-series-species-of-types where
Imports
open import foundation.cartesian-product-types open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.functoriality-cartesian-product-types open import foundation.functoriality-dependent-pair-types open import foundation.postcomposition-functions open import foundation.universe-levels open import species.species-of-types
Idea
In classical mathematics, the Cauchy series of a
species (of
finite types) S
is the formal
series in x
:
Σ (n : ℕ) (|S({1,...,n})| x^n / n!)
The categorified version of this series is:
Σ (F : Finite-Type), S(F) × (F → X).
Hence, we can generalize to
Cauchy series¶
of any species of types S
with the following
definition:
Σ (U : UU), S(U) × (U → X).
Definition
cauchy-series-species-types : {l1 l2 l3 : Level} → species-types l1 l2 → UU l3 → UU (lsuc l1 ⊔ l2 ⊔ l3) cauchy-series-species-types {l1} S X = Σ (UU l1) (λ U → S U × (U → X))
Properties
Equivalent species of types have equivalent Cauchy series
module _ {l1 l2 l3 l4 : Level} (S : species-types l1 l2) (T : species-types l1 l3) (f : (F : UU l1) → (S F ≃ T F)) (X : UU l4) where equiv-cauchy-series-equiv-species-types : cauchy-series-species-types S X ≃ cauchy-series-species-types T X equiv-cauchy-series-equiv-species-types = equiv-tot (λ X → equiv-product-left (f X))
Cauchy series of types are equivalence invariant
module _ {l1 l2 l3 l4 : Level} (S : species-types l1 l2) {X : UU l3} {Y : UU l4} (e : X ≃ Y) where equiv-cauchy-series-species-types : cauchy-series-species-types S X ≃ cauchy-series-species-types S Y equiv-cauchy-series-species-types = equiv-tot (λ F → equiv-product-right (equiv-postcomp F e))
Recent changes
- 2025-08-30. Fredrik Bakke. Some cleanup of species (#1502).
- 2025-02-11. Fredrik Bakke. Switch from
𝔽
toFinite-*
(#1312). - 2024-02-06. Fredrik Bakke. Rename
(co)prod
to(co)product
(#1017). - 2024-01-14. Fredrik Bakke. Exponentiating retracts of maps (#989).
- 2023-11-24. Egbert Rijke. Refactor precomposition (#937).