The unit type
Content created by Egbert Rijke, Fredrik Bakke, Jonathan Prieto-Cubides, Fernando Chu, Daniel Gratzer and Elisabeth Stenholm.
Created on 2022-01-27.
Last modified on 2025-01-07.
module foundation.unit-type where
Imports
open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.diagonal-maps-of-types open import foundation.raising-universe-levels open import foundation.universe-levels open import foundation-core.constant-maps open import foundation-core.contractible-types open import foundation-core.equivalences open import foundation-core.identity-types open import foundation-core.injective-maps open import foundation-core.propositions open import foundation-core.retractions open import foundation-core.sets open import foundation-core.truncated-types open import foundation-core.truncation-levels
Idea
The unit type is a type inductively generated by a single point.
Definition
The unit type
record unit : UU lzero where instance constructor star {-# BUILTIN UNIT unit #-}
The induction principle of the unit type
ind-unit : {l : Level} {P : unit → UU l} → P star → (x : unit) → P x ind-unit p star = p
The terminal map out of a type
module _ {l : Level} (A : UU l) where terminal-map : A → unit terminal-map = const A star
Points as maps out of the unit type
module _ {l : Level} {A : UU l} where point : A → (unit → A) point = diagonal-exponential A unit
Raising the universe level of the unit type
raise-unit : (l : Level) → UU l raise-unit l = raise l unit raise-star : {l : Level} → raise l unit raise-star = map-raise star raise-terminal-map : {l1 l2 : Level} (A : UU l1) → A → raise-unit l2 raise-terminal-map {l2 = l2} A = const A raise-star compute-raise-unit : (l : Level) → unit ≃ raise-unit l compute-raise-unit l = compute-raise l unit inv-compute-raise-unit : (l : Level) → raise-unit l ≃ unit inv-compute-raise-unit l = inv-compute-raise l unit
Properties
The unit type is contractible
abstract is-contr-unit : is-contr unit pr1 is-contr-unit = star pr2 is-contr-unit _ = refl abstract is-contr-raise-unit : {l1 : Level} → is-contr (raise-unit l1) is-contr-raise-unit {l1} = is-contr-equiv' unit (compute-raise l1 unit) is-contr-unit
Any contractible type is equivalent to the unit type
module _ {l : Level} {A : UU l} where is-equiv-terminal-map-is-contr : is-contr A → is-equiv (terminal-map A) is-equiv-terminal-map-is-contr H = is-equiv-is-invertible (λ _ → center H) (λ _ → refl) (contraction H) equiv-unit-is-contr : is-contr A → A ≃ unit equiv-unit-is-contr H = terminal-map A , is-equiv-terminal-map-is-contr H is-contr-retraction-terminal-map : retraction (terminal-map A) → is-contr A is-contr-retraction-terminal-map (h , H) = h star , H is-contr-is-equiv-terminal-map : is-equiv (terminal-map A) → is-contr A is-contr-is-equiv-terminal-map H = is-contr-retraction-terminal-map (retraction-is-equiv H) is-contr-equiv-unit : A ≃ unit → is-contr A is-contr-equiv-unit e = map-inv-equiv e star , is-retraction-map-inv-equiv e
Any contractible type is equivalent to the raised unit type
module _ {l1 l2 : Level} {A : UU l1} where is-equiv-raise-terminal-map-is-contr : is-contr A → is-equiv (raise-terminal-map {l2 = l2} A) is-equiv-raise-terminal-map-is-contr H = is-equiv-is-invertible ( λ _ → center H) ( λ where (map-raise x) → refl) ( contraction H) equiv-raise-unit-is-contr : is-contr A → A ≃ raise-unit l2 equiv-raise-unit-is-contr H = raise-terminal-map A , is-equiv-raise-terminal-map-is-contr H is-contr-retraction-raise-terminal-map : retraction (raise-terminal-map {l2 = l2} A) → is-contr A is-contr-retraction-raise-terminal-map (h , H) = h raise-star , H is-contr-is-equiv-raise-terminal-map : is-equiv (raise-terminal-map {l2 = l2} A) → is-contr A is-contr-is-equiv-raise-terminal-map H = is-contr-retraction-raise-terminal-map (retraction-is-equiv H) is-contr-equiv-raise-unit : A ≃ raise-unit l2 → is-contr A is-contr-equiv-raise-unit e = ( map-inv-equiv e raise-star) , ( λ x → ap (map-inv-equiv e) (eq-is-contr is-contr-raise-unit) ∙ is-retraction-map-inv-equiv e x)
The unit type is a proposition
abstract is-prop-unit : is-prop unit is-prop-unit = is-prop-is-contr is-contr-unit unit-Prop : Prop lzero unit-Prop = unit , is-prop-unit abstract is-prop-raise-unit : {l1 : Level} → is-prop (raise-unit l1) is-prop-raise-unit {l1} = is-prop-equiv' (compute-raise l1 unit) is-prop-unit raise-unit-Prop : (l1 : Level) → Prop l1 raise-unit-Prop l1 = raise-unit l1 , is-prop-raise-unit
The unit type is a set
abstract is-set-unit : is-set unit is-set-unit = is-trunc-succ-is-trunc neg-one-𝕋 is-prop-unit unit-Set : Set lzero unit-Set = unit , is-set-unit abstract is-set-raise-unit : {l1 : Level} → is-set (raise-unit l1) is-set-raise-unit = is-trunc-succ-is-trunc neg-one-𝕋 is-prop-raise-unit raise-unit-Set : (l1 : Level) → Set l1 raise-unit-Set l1 = raise-unit l1 , is-set-raise-unit
All parallel maps into unit
are equal
module _ {l : Level} {A : UU l} {f g : A → unit} where eq-map-into-unit : f = g eq-map-into-unit = refl
The map point x
is injective for every x
module _ {l : Level} {A : UU l} (x : A) where is-injective-point : is-injective (point x) is-injective-point _ = refl point-injection : injection unit A pr1 point-injection = point x pr2 point-injection = is-injective-point
Recent changes
- 2025-01-07. Fredrik Bakke. Logic (#1226).
- 2024-11-05. Fredrik Bakke and Egbert Rijke. Continuation modalities and Lawvere–Tierney topologies (#1157).
- 2024-09-06. Fredrik Bakke. Colocal types (#1089).
- 2024-08-29. Fernando Chu, Fredrik Bakke and Egbert Rijke. Cones, limits and reduced coslices of precats (#1161).
- 2024-04-11. Fredrik Bakke. Refactor diagonals (#1096).