The interior of subsets of metric spaces
Content created by Louis Wasserman.
Created on 2025-08-30.
Last modified on 2025-08-30.
module metric-spaces.interior-subsets-metric-spaces where
Imports
open import elementary-number-theory.positive-rational-numbers open import foundation.dependent-pair-types open import foundation.empty-subtypes open import foundation.empty-types open import foundation.existential-quantification open import foundation.full-subtypes open import foundation.propositional-truncations open import foundation.propositions open import foundation.raising-universe-levels open import foundation.subtypes open import foundation.unions-subtypes open import foundation.unit-type open import foundation.universe-levels open import metric-spaces.metric-spaces open import metric-spaces.subspaces-metric-spaces
Idea
The
interior¶
of a subset S
of a
metric space X
is the set of points x
of
X
where some neighborhood of x
is contained in S
.
Definition
module _ {l1 l2 l3 : Level} (X : Metric-Space l1 l2) (S : subset-Metric-Space l3 X) where interior-subset-Metric-Space : subset-Metric-Space (l1 ⊔ l2 ⊔ l3) X interior-subset-Metric-Space x = ∃ ℚ⁺ (λ ε → leq-prop-subtype (neighborhood-prop-Metric-Space X ε x) S)
Properties
The interior of S
is a subset of S
module _ {l1 l2 l3 : Level} (X : Metric-Space l1 l2) (S : subset-Metric-Space l3 X) where is-subset-interior-subset-Metric-Space : interior-subset-Metric-Space X S ⊆ S is-subset-interior-subset-Metric-Space x ∃ε = let open do-syntax-trunc-Prop (S x) in do (ε , Nεx⊆S) ← ∃ε Nεx⊆S x (refl-neighborhood-Metric-Space X ε x)
The interior of the empty subset is empty
module _ {l1 l2 : Level} (X : Metric-Space l1 l2) where is-empty-interior-empty-subset-Metric-Space : is-empty-subtype ( interior-subset-Metric-Space X (empty-subset-Metric-Space X)) is-empty-interior-empty-subset-Metric-Space x ∃ε = let open do-syntax-trunc-Prop empty-Prop in do (ε , Nεx⊆∅) ← ∃ε map-inv-raise (Nεx⊆∅ x (refl-neighborhood-Metric-Space X ε x))
The interior of the entire metric space is the metric space
is-full-interior-full-subset-Metric-Space : is-full-subtype ( interior-subset-Metric-Space X (full-subset-Metric-Space X)) is-full-interior-full-subset-Metric-Space x = intro-exists one-ℚ⁺ (λ _ _ → map-raise star)
External links
- Interior at Wikidata
Recent changes
- 2025-08-30. Louis Wasserman. Topology in metric spaces (#1474).