The interior of subsets of metric spaces

Content created by Louis Wasserman.

Created on 2025-08-30.
Last modified on 2025-08-30.

module metric-spaces.interior-subsets-metric-spaces where
Imports
open import elementary-number-theory.positive-rational-numbers

open import foundation.dependent-pair-types
open import foundation.empty-subtypes
open import foundation.empty-types
open import foundation.existential-quantification
open import foundation.full-subtypes
open import foundation.propositional-truncations
open import foundation.propositions
open import foundation.raising-universe-levels
open import foundation.subtypes
open import foundation.unions-subtypes
open import foundation.unit-type
open import foundation.universe-levels

open import metric-spaces.metric-spaces
open import metric-spaces.subspaces-metric-spaces

Idea

The interior of a subset S of a metric space X is the set of points x of X where some neighborhood of x is contained in S.

Definition

module _
  {l1 l2 l3 : Level} (X : Metric-Space l1 l2) (S : subset-Metric-Space l3 X)
  where

  interior-subset-Metric-Space : subset-Metric-Space (l1  l2  l3) X
  interior-subset-Metric-Space x =
     ℚ⁺  ε  leq-prop-subtype (neighborhood-prop-Metric-Space X ε x) S)

Properties

The interior of S is a subset of S

module _
  {l1 l2 l3 : Level} (X : Metric-Space l1 l2) (S : subset-Metric-Space l3 X)
  where

  is-subset-interior-subset-Metric-Space :
    interior-subset-Metric-Space X S  S
  is-subset-interior-subset-Metric-Space x ∃ε =
    let open do-syntax-trunc-Prop (S x)
    in do
      (ε , Nεx⊆S)  ∃ε
      Nεx⊆S x (refl-neighborhood-Metric-Space X ε x)

The interior of the empty subset is empty

module _
  {l1 l2 : Level} (X : Metric-Space l1 l2)
  where

  is-empty-interior-empty-subset-Metric-Space :
    is-empty-subtype
      ( interior-subset-Metric-Space X (empty-subset-Metric-Space X))
  is-empty-interior-empty-subset-Metric-Space x ∃ε =
    let open do-syntax-trunc-Prop empty-Prop
    in do
      (ε , Nεx⊆∅)  ∃ε
      map-inv-raise (Nεx⊆∅ x (refl-neighborhood-Metric-Space X ε x))

The interior of the entire metric space is the metric space

  is-full-interior-full-subset-Metric-Space :
    is-full-subtype
      ( interior-subset-Metric-Space X (full-subset-Metric-Space X))
  is-full-interior-full-subset-Metric-Space x =
    intro-exists one-ℚ⁺  _ _  map-raise star)

Recent changes