Permutations of spans of families of types
Content created by Egbert Rijke.
Created on 2024-01-28.
Last modified on 2024-01-28.
module foundation.permutations-spans-families-of-types where
Imports
open import foundation.dependent-pair-types open import foundation.spans-families-of-types open import foundation.universe-levels open import foundation-core.equivalences open import foundation-core.function-types
Idea
Permutations of spans of families of types are a generalization of the
opposite of a
binary span. Consider a
span (S , f)
on a type family
A : I → 𝒰
and an equivalence e : I ≃ I
.
Then the permutation¶
is the span (S , f ∘ e)
on the type family A ∘ e
.
Definitions
Permutations of spans of families of types
module _ {l1 l2 l3 : Level} {I : UU l1} {A : I → UU l2} where permutation-span-type-family : (e : I ≃ I) → span-type-family l3 A → span-type-family l3 (A ∘ map-equiv e) pr1 (permutation-span-type-family e s) = spanning-type-span-type-family s pr2 (permutation-span-type-family e s) i = map-span-type-family s (map-equiv e i)
Recent changes
- 2024-01-28. Egbert Rijke. Span diagrams (#1007).