Series of rational numbers
Content created by Louis Wasserman.
Created on 2025-11-16.
Last modified on 2025-11-16.
{-# OPTIONS --lossy-unification #-} module elementary-number-theory.series-rational-numbers where
Imports
open import analysis.convergent-series-metric-abelian-groups open import analysis.series-metric-abelian-groups open import elementary-number-theory.addition-nonnegative-rational-numbers open import elementary-number-theory.inequality-natural-numbers open import elementary-number-theory.inequality-rational-numbers open import elementary-number-theory.metric-additive-group-of-rational-numbers open import elementary-number-theory.natural-numbers open import elementary-number-theory.nonnegative-rational-numbers open import elementary-number-theory.rational-numbers open import foundation.dependent-pair-types open import foundation.existential-quantification open import foundation.propositions open import foundation.universe-levels open import lists.sequences open import order-theory.increasing-sequences-posets open import order-theory.order-preserving-maps-posets
Idea
A series¶ of rational numbers is a series in the metric additive group of rational numbers
Definition
series-ℚ : UU lzero series-ℚ = series-Metric-Ab metric-ab-add-ℚ series-terms-ℚ : sequence ℚ → series-ℚ series-terms-ℚ = series-terms-Metric-Ab partial-sum-series-ℚ : series-ℚ → ℕ → ℚ partial-sum-series-ℚ = partial-sum-series-Metric-Ab term-series-ℚ : series-ℚ → ℕ → ℚ term-series-ℚ = term-series-Metric-Ab
Properties
The proposition that a series converges to a sum
is-sum-prop-series-ℚ : series-ℚ → ℚ → Prop lzero is-sum-prop-series-ℚ = is-sum-prop-series-Metric-Ab is-sum-series-ℚ : series-ℚ → ℚ → UU lzero is-sum-series-ℚ = is-sum-series-Metric-Ab
The proposition that a series grows without bound
partial-sum-stays-above-prop-series-ℚ : series-ℚ → ℚ → ℕ → Prop lzero partial-sum-stays-above-prop-series-ℚ σ q n = Π-Prop ℕ (λ k → leq-ℕ-Prop n k ⇒ leq-ℚ-Prop q (partial-sum-series-ℚ σ k)) grows-without-bound-prop-series-ℚ : series-ℚ → Prop lzero grows-without-bound-prop-series-ℚ σ = Π-Prop ℚ (λ q → ∃ ℕ (partial-sum-stays-above-prop-series-ℚ σ q)) grows-without-bound-series-ℚ : series-ℚ → UU lzero grows-without-bound-series-ℚ σ = type-Prop (grows-without-bound-prop-series-ℚ σ)
If all elements of a series are nonnegative, its partial sums are increasing
abstract is-increasing-partial-sum-is-nonnegative-term-series-ℚ : (σ : series-ℚ) → ((n : ℕ) → is-nonnegative-ℚ (term-series-ℚ σ n)) → is-increasing-sequence-Poset ℚ-Poset (partial-sum-series-ℚ σ) is-increasing-partial-sum-is-nonnegative-term-series-ℚ σ H = is-increasing-leq-succ-sequence-Poset ( ℚ-Poset) ( partial-sum-series-ℚ σ) ( λ n → is-inflationary-map-right-add-rational-ℚ⁰⁺ ( term-series-ℚ σ n , H n) ( partial-sum-series-ℚ σ n))
Recent changes
- 2025-11-16. Louis Wasserman. The harmonic series diverges (#1708).