Perfect subgroups
Content created by Fredrik Bakke and Ulrik Buchholtz.
Created on 2023-10-16.
Last modified on 2023-10-16.
module group-theory.perfect-subgroups where
Imports
open import foundation.propositions open import foundation.universe-levels open import group-theory.groups open import group-theory.perfect-groups open import group-theory.subgroups
Idea
A subgroup H
of a group
G
is a perfect subgroup if it is a
perfect group on its own.
Definitions
The predicate of being a perfect subgroup
module _ {l1 l2 : Level} (G : Group l1) (H : Subgroup l2 G) where is-perfect-prop-Subgroup : Prop (l1 ⊔ l2) is-perfect-prop-Subgroup = is-perfect-prop-Group (group-Subgroup G H) is-perfect-Subgroup : UU (l1 ⊔ l2) is-perfect-Subgroup = type-Prop is-perfect-prop-Subgroup is-prop-is-perfect-Subgroup : is-prop is-perfect-Subgroup is-prop-is-perfect-Subgroup = is-prop-type-Prop is-perfect-prop-Subgroup
External links
A wikidata identifier was not available for this concept.
Recent changes
- 2023-10-16. Ulrik Buchholtz and Fredrik Bakke. Perfect subgroups (#847).