Homotopies

Content created by Fredrik Bakke, Egbert Rijke, Jonathan Prieto-Cubides, Vojtěch Štěpančík and maybemabeline.

Created on 2022-02-04.
Last modified on 2024-11-05.

module foundation-core.homotopies where
Imports
open import foundation.action-on-identifications-dependent-functions
open import foundation.action-on-identifications-functions
open import foundation.universe-levels

open import foundation-core.dependent-identifications
open import foundation-core.function-types
open import foundation-core.identity-types
open import foundation-core.transport-along-identifications

Idea

A homotopy between dependent functions f and g is a pointwise equality between them.

Definitions

The type family of identifications between values of two dependent functions

module _
  {l1 l2 : Level} {X : UU l1} {P : X  UU l2} (f g : (x : X)  P x)
  where

  eq-value : X  UU l2
  eq-value x = (f x  g x)

  {-# INLINE eq-value #-}

  map-compute-dependent-identification-eq-value :
    {x y : X} (p : x  y) (q : eq-value x) (r : eq-value y) 
    apd f p  r  ap (tr P p) q  apd g p 
    dependent-identification eq-value p q r
  map-compute-dependent-identification-eq-value refl q r =
    inv  (concat' r (right-unit  ap-id q))

The type family of identifications between values of two ordinary functions

module _
  {l1 l2 : Level} {X : UU l1} {Y : UU l2} (f g : X  Y)
  where

  eq-value-function : X  UU l2
  eq-value-function = eq-value f g

  {-# INLINE eq-value-function #-}

  map-compute-dependent-identification-eq-value-function :
    {x y : X} (p : x  y) (q : eq-value f g x) (r : eq-value f g y) 
    ap f p  r  q  ap g p 
    dependent-identification eq-value-function p q r
  map-compute-dependent-identification-eq-value-function refl q r =
    inv  concat' r right-unit

map-compute-dependent-identification-eq-value-id-id :
  {l1 : Level} {A : UU l1} {a b : A} (p : a  b) (q : a  a) (r : b  b) 
  p  r  q  p  dependent-identification (eq-value id id) p q r
map-compute-dependent-identification-eq-value-id-id refl q r s =
  inv (s  right-unit)

map-compute-dependent-identification-eq-value-comp-id :
  {l1 l2 : Level} {A : UU l1} {B : UU l2} (g : B  A) (f : A  B) {a b : A}
  (p : a  b) (q : eq-value (g  f) id a) (r : eq-value (g  f) id b) 
  ap g (ap f p)  r  q  p 
  dependent-identification (eq-value (g  f) id) p q r
map-compute-dependent-identification-eq-value-comp-id g f refl q r s =
  inv (s  right-unit)

Homotopies

module _
  {l1 l2 : Level} {A : UU l1} {B : A  UU l2}
  where

  infix 6 _~_
  _~_ : (f g : (x : A)  B x)  UU (l1  l2)
  f ~ g = (x : A)  eq-value f g x

Properties

Reflexivity

module _
  {l1 l2 : Level} {A : UU l1} {B : A  UU l2}
  where

  refl-htpy : {f : (x : A)  B x}  f ~ f
  refl-htpy x = refl

  refl-htpy' : (f : (x : A)  B x)  f ~ f
  refl-htpy' f = refl-htpy

Inverting homotopies

  inv-htpy : {f g : (x : A)  B x}  f ~ g  g ~ f
  inv-htpy H x = inv (H x)

Concatenating homotopies

module _
  {l1 l2 : Level} {A : UU l1} {B : A  UU l2}
  where

  infixl 15 _∙h_
  _∙h_ : {f g h : (x : A)  B x}  f ~ g  g ~ h  f ~ h
  (H ∙h K) x = (H x)  (K x)

  concat-htpy :
    {f g : (x : A)  B x} 
    f ~ g  (h : (x : A)  B x)  g ~ h  f ~ h
  concat-htpy H h K x = concat (H x) (h x) (K x)

  concat-htpy' :
    (f : (x : A)  B x) {g h : (x : A)  B x} 
    g ~ h  f ~ g  f ~ h
  concat-htpy' f K H = H ∙h K

  concat-inv-htpy :
    {f g : (x : A)  B x} 
    f ~ g  (h : (x : A)  B x)  f ~ h  g ~ h
  concat-inv-htpy = concat-htpy  inv-htpy

  concat-inv-htpy' :
    (f : (x : A)  B x) {g h : (x : A)  B x} 
    g ~ h  f ~ h  f ~ g
  concat-inv-htpy' f K = concat-htpy' f (inv-htpy K)

Transposition of homotopies

module _
  {l1 l2 : Level} {A : UU l1} {B : A  UU l2} {f g h : (x : A)  B x}
  (H : f ~ g) (K : g ~ h) (L : f ~ h) (M : H ∙h K ~ L)
  where

  left-transpose-htpy-concat : K ~ inv-htpy H ∙h L
  left-transpose-htpy-concat x =
    left-transpose-eq-concat (H x) (K x) (L x) (M x)

  inv-htpy-left-transpose-htpy-concat : inv-htpy H ∙h L ~ K
  inv-htpy-left-transpose-htpy-concat = inv-htpy left-transpose-htpy-concat

  right-transpose-htpy-concat : H ~ L ∙h inv-htpy K
  right-transpose-htpy-concat x =
    right-transpose-eq-concat (H x) (K x) (L x) (M x)

  inv-htpy-right-transpose-htpy-concat : L ∙h inv-htpy K ~ H
  inv-htpy-right-transpose-htpy-concat = inv-htpy right-transpose-htpy-concat

Associativity of concatenation of homotopies

module _
  {l1 l2 : Level} {A : UU l1} {B : A  UU l2} {f g h k : (x : A)  B x}
  (H : f ~ g) (K : g ~ h) (L : h ~ k)
  where

  assoc-htpy : (H ∙h K) ∙h L ~ H ∙h (K ∙h L)
  assoc-htpy x = assoc (H x) (K x) (L x)

  inv-htpy-assoc-htpy : H ∙h (K ∙h L) ~ (H ∙h K) ∙h L
  inv-htpy-assoc-htpy = inv-htpy assoc-htpy

Unit laws for homotopies

module _
  {l1 l2 : Level} {A : UU l1} {B : A  UU l2}
  {f g : (x : A)  B x} {H : f ~ g}
  where

  left-unit-htpy : refl-htpy ∙h H ~ H
  left-unit-htpy x = left-unit

  inv-htpy-left-unit-htpy : H ~ refl-htpy ∙h H
  inv-htpy-left-unit-htpy = inv-htpy left-unit-htpy

  right-unit-htpy : H ∙h refl-htpy ~ H
  right-unit-htpy x = right-unit

  inv-htpy-right-unit-htpy : H ~ H ∙h refl-htpy
  inv-htpy-right-unit-htpy = inv-htpy right-unit-htpy

Inverse laws for homotopies

module _
  {l1 l2 : Level} {A : UU l1} {B : A  UU l2}
  {f g : (x : A)  B x} (H : f ~ g)
  where

  left-inv-htpy : inv-htpy H ∙h H ~ refl-htpy
  left-inv-htpy = left-inv  H

  inv-htpy-left-inv-htpy : refl-htpy ~ inv-htpy H ∙h H
  inv-htpy-left-inv-htpy = inv-htpy left-inv-htpy

  right-inv-htpy : H ∙h inv-htpy H ~ refl-htpy
  right-inv-htpy = right-inv  H

  inv-htpy-right-inv-htpy : refl-htpy ~ H ∙h inv-htpy H
  inv-htpy-right-inv-htpy = inv-htpy right-inv-htpy

Inverting homotopies is an involution

module _
  {l1 l2 : Level} {A : UU l1} {B : A  UU l2}
  {f g : (x : A)  B x} (H : f ~ g)
  where

  inv-inv-htpy : inv-htpy (inv-htpy H) ~ H
  inv-inv-htpy = inv-inv  H

Distributivity of inv over concat for homotopies

module _
  {l1 l2 : Level} {A : UU l1} {B : A  UU l2} {f g h : (x : A)  B x}
  (H : f ~ g) (K : g ~ h)
  where

  distributive-inv-concat-htpy :
    inv-htpy (H ∙h K) ~ inv-htpy K ∙h inv-htpy H
  distributive-inv-concat-htpy x = distributive-inv-concat (H x) (K x)

  inv-htpy-distributive-inv-concat-htpy :
    inv-htpy K ∙h inv-htpy H ~ inv-htpy (H ∙h K)
  inv-htpy-distributive-inv-concat-htpy =
    inv-htpy distributive-inv-concat-htpy

Naturality of homotopies with respect to identifications

Given two maps f g : A → B and a homotopy H : f ~ g, then for every identification p : x = y in A, we have a commuting square of identifications

          ap f p
     f x -------> f y
      |            |
  H x |            | H y
      ∨            ∨
     g x -------> g y.
          ap g p
nat-htpy :
  {l1 l2 : Level} {A : UU l1} {B : UU l2} {f g : A  B} (H : f ~ g)
  {x y : A} (p : x  y) 
  H x  ap g p  ap f p  H y
nat-htpy H refl = right-unit

inv-nat-htpy :
  {l1 l2 : Level} {A : UU l1} {B : UU l2} {f g : A  B} (H : f ~ g)
  {x y : A} (p : x  y) 
  ap f p  H y  H x  ap g p
inv-nat-htpy H p = inv (nat-htpy H p)

nat-refl-htpy :
  {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A  B)
  {x y : A} (p : x  y) 
  nat-htpy (refl-htpy' f) p  inv right-unit
nat-refl-htpy f refl = refl

inv-nat-refl-htpy :
  {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A  B)
  {x y : A} (p : x  y) 
  inv-nat-htpy (refl-htpy' f) p  right-unit
inv-nat-refl-htpy f refl = refl

nat-htpy-id :
  {l : Level} {A : UU l} {f : A  A} (H : f ~ id)
  {x y : A} (p : x  y)  H x  p  ap f p  H y
nat-htpy-id H refl = right-unit

inv-nat-htpy-id :
  {l : Level} {A : UU l} {f : A  A} (H : f ~ id)
  {x y : A} (p : x  y)  ap f p  H y  H x  p
inv-nat-htpy-id H p = inv (nat-htpy-id H p)

Conjugation by homotopies

Given a homotopy H : f ~ g we obtain a natural map f x = f y → g x = g y given by conjugation by H.

conjugate-htpy :
  {l1 l2 : Level} {A : UU l1} {B : UU l2} {f g : A  B}
  (H : f ~ g) {x y : A}  f x  f y  g x  g y
conjugate-htpy H {x} {y} p = inv (H x)  (p  H y)

Homotopies preserve the laws of the action on identity types

module _
  {l1 l2 : Level} {A : UU l1} {B : A  UU l2} {f g h : (x : A)  B x}
  where

  ap-concat-htpy :
    (H : f ~ g) {K K' : g ~ h}  K ~ K'  H ∙h K ~ H ∙h K'
  ap-concat-htpy H L x = ap (concat (H x) (h x)) (L x)

  ap-concat-htpy' :
    {H H' : f ~ g} (K : g ~ h)  H ~ H'  H ∙h K ~ H' ∙h K
  ap-concat-htpy' K L x =
    ap (concat' (f x) (K x)) (L x)

  ap-binary-concat-htpy :
    {H H' : f ~ g} {K K' : g ~ h}  H ~ H'  K ~ K'  H ∙h K ~ H' ∙h K'
  ap-binary-concat-htpy {H} {H'} {K} {K'} HH KK =
    ap-concat-htpy H KK ∙h ap-concat-htpy' K' HH

module _
  {l1 l2 : Level} {A : UU l1} {B : A  UU l2} {f g : (x : A)  B x}
  {H H' : f ~ g}
  where

  ap-inv-htpy :
    H ~ H'  inv-htpy H ~ inv-htpy H'
  ap-inv-htpy K x = ap inv (K x)

Concatenating with an inverse homotopy is inverse to concatenating

We show that the operation K ↦ inv-htpy H ∙h K is inverse to the operation K ↦ H ∙h K by constructing homotopies

  inv-htpy H ∙h (H ∙h K) ~ K
  H ∙h (inv H ∙h K) ~ K.

Similarly, we show that the operation H ↦ H ∙h inv-htpy K is inverse to the operation H ↦ H ∙h K by constructing homotopies

  (H ∙h K) ∙h inv-htpy K ~ H
  (H ∙h inv-htpy K) ∙h K ~ H.
module _
  {l1 l2 : Level} {A : UU l1} {B : A  UU l2} {f g h : (x : A)  B x}
  where

  is-retraction-inv-concat-htpy :
    (H : f ~ g) (K : g ~ h)  inv-htpy H ∙h (H ∙h K) ~ K
  is-retraction-inv-concat-htpy H K x = is-retraction-inv-concat (H x) (K x)

  is-section-inv-concat-htpy :
    (H : f ~ g) (L : f ~ h)  H ∙h (inv-htpy H ∙h L) ~ L
  is-section-inv-concat-htpy H L x = is-section-inv-concat (H x) (L x)

  is-retraction-inv-concat-htpy' :
    (K : g ~ h) (H : f ~ g)  (H ∙h K) ∙h inv-htpy K ~ H
  is-retraction-inv-concat-htpy' K H x = is-retraction-inv-concat' (K x) (H x)

  is-section-inv-concat-htpy' :
    (K : g ~ h) (L : f ~ h)  (L ∙h inv-htpy K) ∙h K ~ L
  is-section-inv-concat-htpy' K L x = is-section-inv-concat' (K x) (L x)

Reasoning with homotopies

Homotopies can be constructed by equational reasoning in the following way:

homotopy-reasoning
  f ~ g by htpy-1
    ~ h by htpy-2
    ~ i by htpy-3

The homotopy obtained in this way is htpy-1 ∙h (htpy-2 ∙h htpy-3), i.e., it is associated fully to the right.

infixl 1 homotopy-reasoning_
infixl 0 step-homotopy-reasoning

homotopy-reasoning_ :
  {l1 l2 : Level} {X : UU l1} {Y : X  UU l2}
  (f : (x : X)  Y x)  f ~ f
homotopy-reasoning f = refl-htpy

step-homotopy-reasoning :
  {l1 l2 : Level} {X : UU l1} {Y : X  UU l2}
  {f g : (x : X)  Y x}  f ~ g 
  (h : (x : X)  Y x)  g ~ h  f ~ h
step-homotopy-reasoning p h q = p ∙h q

syntax step-homotopy-reasoning p h q = p ~ h by q

See also

Recent changes