Mere spheres
Content created by Egbert Rijke.
Created on 2023-10-17.
Last modified on 2023-10-17.
module synthetic-homotopy-theory.mere-spheres where
Imports
open import elementary-number-theory.natural-numbers open import foundation.dependent-pair-types open import foundation.mere-equivalences open import foundation.propositions open import foundation.universe-levels open import synthetic-homotopy-theory.spheres
Idea
A mere n
-sphere is a type X
that is
merely equivalent to the
n
-sphere.
Definitions
The predicate of being a mere n
-sphere
module _ {l : Level} (n : ℕ) (X : UU l) where is-mere-sphere-Prop : Prop l is-mere-sphere-Prop = mere-equiv-Prop (sphere n) X is-mere-sphere : UU l is-mere-sphere = type-Prop is-mere-sphere-Prop is-prop-is-mere-sphere : is-prop is-mere-sphere is-prop-is-mere-sphere = is-prop-type-Prop is-mere-sphere-Prop
Mere spheres
mere-sphere : (l : Level) (n : ℕ) → UU (lsuc l) mere-sphere l n = Σ (UU l) (is-mere-sphere n) module _ {l : Level} (n : ℕ) (X : mere-sphere l n) where type-mere-sphere : UU l type-mere-sphere = pr1 X mere-equiv-mere-sphere : mere-equiv (sphere n) type-mere-sphere mere-equiv-mere-sphere = pr2 X
Recent changes
- 2023-10-17. Egbert Rijke. Tangent spheres (#853).