Metric abelian groups of normed real vector spaces
Content created by Louis Wasserman.
Created on 2025-12-03.
Last modified on 2025-12-03.
module analysis.metric-abelian-groups-normed-real-vector-spaces where
Imports
open import analysis.metric-abelian-groups open import foundation.dependent-pair-types open import foundation.equality-dependent-pair-types open import foundation.identity-types open import foundation.logical-equivalences open import foundation.subtypes open import foundation.universe-levels open import group-theory.abelian-groups open import linear-algebra.normed-real-vector-spaces open import metric-spaces.extensionality-pseudometric-spaces open import metric-spaces.metric-spaces open import metric-spaces.pseudometric-spaces open import metric-spaces.rational-neighborhood-relations open import real-numbers.dedekind-real-numbers open import real-numbers.distance-real-numbers open import real-numbers.large-additive-group-of-real-numbers open import real-numbers.metric-additive-group-of-real-numbers
Idea
A normed real vector space forms a metric abelian group under addition.
Definition
module _ {l1 l2 : Level} (V : Normed-ℝ-Vector-Space l1 l2) where ab-metric-ab-Normed-ℝ-Vector-Space : Ab l2 ab-metric-ab-Normed-ℝ-Vector-Space = ab-Normed-ℝ-Vector-Space V type-metric-ab-Normed-ℝ-Vector-Space : UU l2 type-metric-ab-Normed-ℝ-Vector-Space = type-Normed-ℝ-Vector-Space V pseudometric-structure-metric-ab-Normed-ℝ-Vector-Space : Pseudometric-Structure l1 type-metric-ab-Normed-ℝ-Vector-Space pseudometric-structure-metric-ab-Normed-ℝ-Vector-Space = pseudometric-structure-Metric-Space (metric-space-Normed-ℝ-Vector-Space V) pseudometric-space-metric-ab-Normed-ℝ-Vector-Space : Pseudometric-Space l2 l1 pseudometric-space-metric-ab-Normed-ℝ-Vector-Space = pseudometric-Metric-Space (metric-space-Normed-ℝ-Vector-Space V) metric-ab-Normed-ℝ-Vector-Space : Metric-Ab l2 l1 metric-ab-Normed-ℝ-Vector-Space = ( ab-metric-ab-Normed-ℝ-Vector-Space , pseudometric-structure-metric-ab-Normed-ℝ-Vector-Space , is-extensional-pseudometric-Metric-Space ( metric-space-Normed-ℝ-Vector-Space V) , is-isometry-neg-Normed-ℝ-Vector-Space V , is-isometry-left-add-Normed-ℝ-Vector-Space V)
Properties
The metric abelian group associated with ℝ as a normed vector space over ℝ is equal to the metric additive group of ℝ
abstract eq-metric-ab-normed-real-vector-space-metric-ab-ℝ : (l : Level) → metric-ab-Normed-ℝ-Vector-Space (normed-real-vector-space-ℝ l) = metric-ab-add-ℝ l eq-metric-ab-normed-real-vector-space-metric-ab-ℝ l = eq-pair-eq-fiber ( eq-type-subtype ( λ M → is-metric-ab-prop-Ab-Pseudometric-Structure (ab-add-ℝ l) M) ( eq-type-subtype ( is-pseudometric-prop-Rational-Neighborhood-Relation (ℝ l)) ( eq-Eq-Rational-Neighborhood-Relation _ _ ( λ d x y → inv-iff (neighborhood-iff-leq-dist-ℝ d x y)))))
Recent changes
- 2025-12-03. Louis Wasserman. Series in Banach spaces (#1710).