Coslice precategories
Content created by Fernando Chu, Egbert Rijke and Fredrik Bakke.
Created on 2024-08-05.
Last modified on 2024-08-29.
module category-theory.coslice-precategories where
Imports
open import category-theory.functors-precategories open import category-theory.opposite-precategories open import category-theory.precategories open import category-theory.slice-precategories open import foundation.universe-levels
Idea
The coslice precategory¶ of a
precategory C
under an object X
of C
is the category of objects of C
equipped with a morphism from X
.
Equivalently, it is the opposite of the slice precategory of Cᵒᵖ
.
Definitions
module _ {l1 l2 : Level} (C : Precategory l1 l2) (X : obj-Precategory C) where Coslice-Precategory : Precategory (l1 ⊔ l2) l2 Coslice-Precategory = opposite-Precategory (Slice-Precategory (opposite-Precategory C) X)
Properties
The coslice precategory has a forgetful functor
module _ {l1 l2 : Level} (C : Precategory l1 l2) (X : obj-Precategory C) where forgetful-functor-Coslice-Precategory : functor-Precategory (Coslice-Precategory C X) C forgetful-functor-Coslice-Precategory = opposite-functor-Precategory ( Slice-Precategory (opposite-Precategory C) X) ( opposite-Precategory C) ( forgetful-functor-Slice-Precategory (opposite-Precategory C) X)
Recent changes
- 2024-08-29. Fernando Chu, Fredrik Bakke and Egbert Rijke. Cones, limits and reduced coslices of precats (#1161).
- 2024-08-05. Fernando Chu. Definition of ordinals (#1159).