Alternation of sequences of real numbers
Content created by Louis Wasserman.
Created on 2026-01-11.
Last modified on 2026-01-11.
module real-numbers.alternation-sequences-real-numbers where
Imports
open import analysis.alternation-sequences-metric-abelian-groups open import elementary-number-theory.multiplication-natural-numbers open import elementary-number-theory.natural-numbers open import elementary-number-theory.parity-natural-numbers open import foundation.conjunction open import foundation.coproduct-types open import foundation.empty-types open import foundation.identity-types open import foundation.propositions open import foundation.universe-levels open import lists.sequences open import real-numbers.dedekind-real-numbers open import real-numbers.limits-of-sequences-real-numbers open import real-numbers.metric-additive-group-of-real-numbers open import real-numbers.negation-real-numbers open import real-numbers.nonnegative-real-numbers open import real-numbers.nonpositive-real-numbers open import real-numbers.positive-and-negative-real-numbers open import real-numbers.raising-universe-levels-real-numbers open import real-numbers.rational-real-numbers
Idea
The
alternation¶
of a sequence of
real numbers aₙ is a sequence bₙ
where bₙ = aₙ if n is
even, and bₙ = -aₙ if
n is odd.
Definition
alternation-sequence-ℝ : {l : Level} → sequence (ℝ l) → sequence (ℝ l) alternation-sequence-ℝ {l} = alternation-sequence-Metric-Ab (metric-ab-add-ℝ l)
Properties
Alternation is an involution
module _ {l : Level} (u : sequence (ℝ l)) where abstract is-involution-alternation-sequence-ℝ : alternation-sequence-ℝ (alternation-sequence-ℝ u) = u is-involution-alternation-sequence-ℝ = is-involution-alternation-sequence-Metric-Ab (metric-ab-add-ℝ l) u
The value of the alternation sequence in terms of the parity of the index
module _ {l : Level} (u : sequence (ℝ l)) where abstract eq-alternation-sequence-is-even-ℝ : (n : ℕ) → is-even-ℕ n → alternation-sequence-ℝ u n = u n eq-alternation-sequence-is-even-ℝ n even with is-decidable-is-even-ℕ n ... | inl _ = refl ... | inr odd = ex-falso (odd even) eq-neg-alternation-sequence-is-odd-ℝ : (n : ℕ) → is-odd-ℕ n → alternation-sequence-ℝ u n = neg-ℝ (u n) eq-neg-alternation-sequence-is-odd-ℝ n odd with is-decidable-is-even-ℕ n ... | inl even = ex-falso (odd even) ... | inr odd = refl
If a sequence has a limit of 0, so does its alternation
abstract is-limit-zero-alternation-sequence-ℝ : {l : Level} {u : sequence (ℝ l)} → is-limit-sequence-ℝ u (raise-zero-ℝ l) → is-limit-sequence-ℝ (alternation-sequence-ℝ u) (raise-zero-ℝ l) is-limit-zero-alternation-sequence-ℝ {l} {u} = is-limit-zero-alternation-sequence-Metric-Ab ( metric-ab-add-ℝ l)
Recent changes
- 2026-01-11. Louis Wasserman. Alternation of sequences (#1763).