Alternation of sequences of real numbers

Content created by Louis Wasserman.

Created on 2026-01-11.
Last modified on 2026-01-11.

module real-numbers.alternation-sequences-real-numbers where
Imports
open import analysis.alternation-sequences-metric-abelian-groups

open import elementary-number-theory.multiplication-natural-numbers
open import elementary-number-theory.natural-numbers
open import elementary-number-theory.parity-natural-numbers

open import foundation.conjunction
open import foundation.coproduct-types
open import foundation.empty-types
open import foundation.identity-types
open import foundation.propositions
open import foundation.universe-levels

open import lists.sequences

open import real-numbers.dedekind-real-numbers
open import real-numbers.limits-of-sequences-real-numbers
open import real-numbers.metric-additive-group-of-real-numbers
open import real-numbers.negation-real-numbers
open import real-numbers.nonnegative-real-numbers
open import real-numbers.nonpositive-real-numbers
open import real-numbers.positive-and-negative-real-numbers
open import real-numbers.raising-universe-levels-real-numbers
open import real-numbers.rational-real-numbers

Idea

The alternation of a sequence of real numbers aₙ is a sequence bₙ where bₙ = aₙ if n is even, and bₙ = -aₙ if n is odd.

Definition

alternation-sequence-ℝ :
  {l : Level}  sequence ( l)  sequence ( l)
alternation-sequence-ℝ {l} = alternation-sequence-Metric-Ab (metric-ab-add-ℝ l)

Properties

Alternation is an involution

module _
  {l : Level}
  (u : sequence ( l))
  where

  abstract
    is-involution-alternation-sequence-ℝ :
      alternation-sequence-ℝ (alternation-sequence-ℝ u)  u
    is-involution-alternation-sequence-ℝ =
      is-involution-alternation-sequence-Metric-Ab (metric-ab-add-ℝ l) u

The value of the alternation sequence in terms of the parity of the index

module _
  {l : Level}
  (u : sequence ( l))
  where

  abstract
    eq-alternation-sequence-is-even-ℝ :
      (n : )  is-even-ℕ n  alternation-sequence-ℝ u n  u n
    eq-alternation-sequence-is-even-ℝ n even
      with is-decidable-is-even-ℕ n
    ... | inl _ = refl
    ... | inr odd = ex-falso (odd even)

    eq-neg-alternation-sequence-is-odd-ℝ :
      (n : )  is-odd-ℕ n  alternation-sequence-ℝ u n  neg-ℝ (u n)
    eq-neg-alternation-sequence-is-odd-ℝ n odd
      with is-decidable-is-even-ℕ n
    ... | inl even = ex-falso (odd even)
    ... | inr odd = refl

If a sequence has a limit of 0, so does its alternation

abstract
  is-limit-zero-alternation-sequence-ℝ :
    {l : Level} {u : sequence ( l)} 
    is-limit-sequence-ℝ u (raise-zero-ℝ l) 
    is-limit-sequence-ℝ (alternation-sequence-ℝ u) (raise-zero-ℝ l)
  is-limit-zero-alternation-sequence-ℝ {l} {u} =
    is-limit-zero-alternation-sequence-Metric-Ab
      ( metric-ab-add-ℝ l)

Recent changes