Dense subsets of metric spaces

Content created by Louis Wasserman.

Created on 2025-08-30.
Last modified on 2025-08-30.

module metric-spaces.dense-subsets-metric-spaces where
Imports
open import elementary-number-theory.positive-rational-numbers

open import foundation.dependent-pair-types
open import foundation.existential-quantification
open import foundation.full-subtypes
open import foundation.propositions
open import foundation.raising-universe-levels
open import foundation.subtypes
open import foundation.unit-type
open import foundation.universe-levels

open import metric-spaces.closure-subsets-metric-spaces
open import metric-spaces.metric-spaces
open import metric-spaces.subspaces-metric-spaces

Idea

A subset S of a metric space is dense if its closure is full.

Definition

module _
  {l1 l2 l3 : Level} (X : Metric-Space l1 l2) (S : subset-Metric-Space l3 X)
  where

  is-dense-prop-subset-Metric-Space : Prop (l1  l2  l3)
  is-dense-prop-subset-Metric-Space =
    is-full-subtype-Prop (closure-subset-Metric-Space X S)

  is-dense-subset-Metric-Space : UU (l1  l2  l3)
  is-dense-subset-Metric-Space = type-Prop is-dense-prop-subset-Metric-Space

Properties

A metric space is dense in itself

module _
  {l1 l2 : Level} (X : Metric-Space l1 l2)
  where

  is-dense-full-subset-Metric-Space :
    is-dense-subset-Metric-Space X (full-subset-Metric-Space X)
  is-dense-full-subset-Metric-Space x ε =
    intro-exists x (refl-neighborhood-Metric-Space X ε x , map-raise star)

Recent changes