Dense subsets of metric spaces
Content created by Louis Wasserman.
Created on 2025-08-30.
Last modified on 2025-08-30.
module metric-spaces.dense-subsets-metric-spaces where
Imports
open import elementary-number-theory.positive-rational-numbers open import foundation.dependent-pair-types open import foundation.existential-quantification open import foundation.full-subtypes open import foundation.propositions open import foundation.raising-universe-levels open import foundation.subtypes open import foundation.unit-type open import foundation.universe-levels open import metric-spaces.closure-subsets-metric-spaces open import metric-spaces.metric-spaces open import metric-spaces.subspaces-metric-spaces
Idea
A subset S
of a
metric space is
dense¶
if its closure is
full.
Definition
module _ {l1 l2 l3 : Level} (X : Metric-Space l1 l2) (S : subset-Metric-Space l3 X) where is-dense-prop-subset-Metric-Space : Prop (l1 ⊔ l2 ⊔ l3) is-dense-prop-subset-Metric-Space = is-full-subtype-Prop (closure-subset-Metric-Space X S) is-dense-subset-Metric-Space : UU (l1 ⊔ l2 ⊔ l3) is-dense-subset-Metric-Space = type-Prop is-dense-prop-subset-Metric-Space
Properties
A metric space is dense in itself
module _ {l1 l2 : Level} (X : Metric-Space l1 l2) where is-dense-full-subset-Metric-Space : is-dense-subset-Metric-Space X (full-subset-Metric-Space X) is-dense-full-subset-Metric-Space x ε = intro-exists x (refl-neighborhood-Metric-Space X ε x , map-raise star)
External links
- Dense set at Wikidata
Recent changes
- 2025-08-30. Louis Wasserman. Topology in metric spaces (#1474).