The Cauchy-Schwarz inequality for complex inner product spaces
Content created by Louis Wasserman.
Created on 2026-01-11.
Last modified on 2026-01-11.
{-# OPTIONS --lossy-unification #-} module linear-algebra.cauchy-schwarz-inequality-complex-inner-product-spaces where
Imports
open import complex-numbers.complex-numbers open import complex-numbers.conjugation-complex-numbers open import complex-numbers.magnitude-complex-numbers open import complex-numbers.multiplication-complex-numbers open import elementary-number-theory.integers open import elementary-number-theory.positive-rational-numbers open import foundation.action-on-identifications-functions open import foundation.binary-transport open import foundation.identity-types open import foundation.transport-along-identifications open import foundation.universe-levels open import linear-algebra.complex-inner-product-spaces open import order-theory.large-posets open import real-numbers.absolute-value-real-numbers open import real-numbers.addition-positive-and-negative-real-numbers open import real-numbers.addition-positive-real-numbers open import real-numbers.addition-real-numbers open import real-numbers.difference-real-numbers open import real-numbers.inequalities-addition-and-subtraction-real-numbers open import real-numbers.inequality-real-numbers open import real-numbers.lipschitz-continuity-multiplication-real-numbers open import real-numbers.multiplication-nonnegative-real-numbers open import real-numbers.multiplication-positive-real-numbers open import real-numbers.multiplication-real-numbers open import real-numbers.multiplicative-inverses-positive-real-numbers open import real-numbers.negation-real-numbers open import real-numbers.nonnegative-real-numbers open import real-numbers.positive-real-numbers open import real-numbers.rational-real-numbers open import real-numbers.similarity-real-numbers open import real-numbers.square-roots-nonnegative-real-numbers
Idea
The
Cauchy-Schwarz inequality¶
states that for any u and v in a
complex inner product space,
the magnitude of the inner
product of u and v is at most the product of the norms of u and v.
The Cauchy-Schwarz inequality is the 78th theorem on Freek Wiedijk’s list of 100 theorems [Wie].
Proof
If ∥u∥² ≤ 1 and ∥v∥² ≤ 1, then |⟨u,v⟩|² ≤ 1
module _ {l1 l2 : Level} (V : ℂ-Inner-Product-Space l1 l2) where abstract leq-one-squared-magnitude-inner-product-leq-one-squared-norm-ℂ-Inner-Product-Space : (u v : type-ℂ-Inner-Product-Space V) → leq-ℝ (squared-norm-ℂ-Inner-Product-Space V u) one-ℝ → leq-ℝ (squared-norm-ℂ-Inner-Product-Space V v) one-ℝ → leq-ℝ ( squared-magnitude-ℂ (inner-product-ℂ-Inner-Product-Space V u v)) ( one-ℝ) leq-one-squared-magnitude-inner-product-leq-one-squared-norm-ℂ-Inner-Product-Space u v ∥u∥²≤1 ∥v∥²≤1 = let open inequality-reasoning-Large-Poset ℝ-Large-Poset _*V_ = mul-ℂ-Inner-Product-Space V _-V_ = diff-ℂ-Inner-Product-Space V _·V_ = inner-product-ℂ-Inner-Product-Space V w = (u ·V v) *V v in leq-is-nonnegative-diff-ℝ _ _ ( chain-of-inequalities zero-ℝ ≤ squared-norm-ℂ-Inner-Product-Space V (u -V w) by is-nonnegative-squared-norm-ℂ-Inner-Product-Space V (u -V w) ≤ ( squared-norm-ℂ-Inner-Product-Space V u) -ℝ ( real-ℕ 2 *ℝ re-ℂ (u ·V w)) +ℝ ( squared-norm-ℂ-Inner-Product-Space V w) by leq-eq-ℝ (squared-norm-diff-ℂ-Inner-Product-Space V u w) ≤ ( squared-norm-ℂ-Inner-Product-Space V u) -ℝ ( real-ℕ 2 *ℝ squared-magnitude-ℂ (u ·V v)) +ℝ ( ( squared-magnitude-ℂ (u ·V v)) *ℝ ( squared-norm-ℂ-Inner-Product-Space V v)) by leq-eq-ℝ ( ap-add-ℝ ( ap-diff-ℝ ( refl) ( ap-mul-ℝ ( refl) ( ap ( re-ℂ) ( ( conjugates-scalar-mul-right-inner-product-ℂ-Inner-Product-Space ( V) ( _) ( u) ( v)) ∙ ( commutative-mul-ℂ _ _) ∙ ( eq-squared-magnitude-mul-conjugate-ℂ (u ·V v)))))) ( squared-norm-mul-ℂ-Inner-Product-Space V _ _)) ≤ ( one-ℝ) -ℝ ( real-ℕ 2 *ℝ squared-magnitude-ℂ (u ·V v)) +ℝ ( squared-magnitude-ℂ (u ·V v) *ℝ one-ℝ) by preserves-leq-add-ℝ ( preserves-leq-right-add-ℝ _ _ _ ∥u∥²≤1) ( preserves-leq-left-mul-ℝ⁰⁺ ( nonnegative-squared-magnitude-ℂ (u ·V v)) ( ∥v∥²≤1)) ≤ ( one-ℝ) +ℝ ( neg-ℝ (real-ℕ 2) *ℝ squared-magnitude-ℂ (u ·V v)) +ℝ ( one-ℝ *ℝ squared-magnitude-ℂ (u ·V v)) by leq-eq-ℝ ( ap-add-ℝ ( ap-add-ℝ refl (inv (left-negative-law-mul-ℝ _ _))) ( commutative-mul-ℝ _ _)) ≤ ( one-ℝ) +ℝ ( ( neg-ℝ (real-ℕ 2) *ℝ squared-magnitude-ℂ (u ·V v)) +ℝ ( one-ℝ *ℝ squared-magnitude-ℂ (u ·V v))) by leq-eq-ℝ (associative-add-ℝ _ _ _) ≤ one-ℝ -ℝ squared-magnitude-ℂ (u ·V v) by leq-eq-ℝ ( ap-add-ℝ ( refl) ( equational-reasoning ( neg-ℝ (real-ℕ 2) *ℝ squared-magnitude-ℂ (u ·V v)) +ℝ ( one-ℝ *ℝ squared-magnitude-ℂ (u ·V v)) = ( neg-ℝ (real-ℕ 2) +ℝ one-ℝ) *ℝ ( squared-magnitude-ℂ (u ·V v)) by inv ( right-distributive-mul-add-ℝ ( neg-ℝ (real-ℕ 2)) ( one-ℝ) ( squared-magnitude-ℂ (u ·V v))) = ( real-ℤ (neg-ℤ (int-ℕ 2)) +ℝ real-ℤ one-ℤ) *ℝ ( squared-magnitude-ℂ (u ·V v)) by ap-mul-ℝ ( ap-add-ℝ ( neg-real-ℤ (int-ℕ 2)) ( refl {x = one-ℝ})) ( refl) = real-ℤ neg-one-ℤ *ℝ squared-magnitude-ℂ (u ·V v) by ap-mul-ℝ (add-real-ℤ _ _) refl = neg-ℝ (squared-magnitude-ℂ (u ·V v)) by left-neg-one-law-mul-ℝ _)))
If ∥u∥ ≤ 1 and ∥v∥ ≤ 1, then |⟨u,v⟩| ≤ 1
module _ {l1 l2 : Level} (V : ℂ-Inner-Product-Space l1 l2) where abstract leq-one-magnitude-inner-product-leq-one-norm-ℂ-Inner-Product-Space : (u v : type-ℂ-Inner-Product-Space V) → leq-ℝ (norm-ℂ-Inner-Product-Space V u) one-ℝ → leq-ℝ (norm-ℂ-Inner-Product-Space V v) one-ℝ → leq-ℝ ( magnitude-ℂ (inner-product-ℂ-Inner-Product-Space V u v)) ( one-ℝ) leq-one-magnitude-inner-product-leq-one-norm-ℂ-Inner-Product-Space u v ∥u∥≤1 ∥v∥≤1 = tr ( leq-ℝ _) ( real-sqrt-one-ℝ⁰⁺) ( preserves-leq-sqrt-ℝ⁰⁺ ( nonnegative-squared-magnitude-ℂ ( inner-product-ℂ-Inner-Product-Space V u v)) ( one-ℝ⁰⁺) ( leq-one-squared-magnitude-inner-product-leq-one-squared-norm-ℂ-Inner-Product-Space ( V) ( u) ( v) ( leq-one-leq-one-sqrt-ℝ⁰⁺ ( nonnegative-squared-norm-ℂ-Inner-Product-Space V u) ( ∥u∥≤1)) ( leq-one-leq-one-sqrt-ℝ⁰⁺ ( nonnegative-squared-norm-ℂ-Inner-Product-Space V v) ( ∥v∥≤1))))
For any v in an inner product space, the norm of (∥v∥ + ε)⁻¹ v is at most 1
module _ {l1 l2 : Level} (V : ℂ-Inner-Product-Space l1 l2) where abstract leq-norm-mul-inv-norm-plus-positive-rational-ℂ-Inner-Product-Space : (v : type-ℂ-Inner-Product-Space V) (ε : ℚ⁺) → leq-ℝ ( norm-ℂ-Inner-Product-Space ( V) ( mul-real-ℂ-Inner-Product-Space ( V) ( real-inv-ℝ⁺ ( add-nonnegative-positive-ℝ ( nonnegative-norm-ℂ-Inner-Product-Space V v) ( positive-real-ℚ⁺ ε))) ( v))) ( one-ℝ) leq-norm-mul-inv-norm-plus-positive-rational-ℂ-Inner-Product-Space v ε = let open inequality-reasoning-Large-Poset ℝ-Large-Poset in chain-of-inequalities norm-ℂ-Inner-Product-Space V ( mul-real-ℂ-Inner-Product-Space V ( real-inv-ℝ⁺ ( add-nonnegative-positive-ℝ ( nonnegative-norm-ℂ-Inner-Product-Space V v) ( positive-real-ℚ⁺ ε))) ( v)) ≤ ( abs-ℝ ( real-inv-ℝ⁺ ( add-nonnegative-positive-ℝ ( nonnegative-norm-ℂ-Inner-Product-Space V v) ( positive-real-ℚ⁺ ε)))) *ℝ ( norm-ℂ-Inner-Product-Space V v) by leq-eq-ℝ (norm-mul-real-ℂ-Inner-Product-Space V _ v) ≤ ( real-inv-ℝ⁺ ( add-nonnegative-positive-ℝ ( nonnegative-norm-ℂ-Inner-Product-Space V v) ( positive-real-ℚ⁺ ε))) *ℝ ( norm-ℂ-Inner-Product-Space V v) by leq-eq-ℝ (ap-mul-ℝ (abs-real-ℝ⁺ (inv-ℝ⁺ _)) refl) ≤ one-ℝ by leq-one-mul-inv-add-positive-ℝ⁰⁺ ( nonnegative-norm-ℂ-Inner-Product-Space V v) ( positive-real-ℚ⁺ ε)
For any u, v in a complex inner product space and any positive rational δ, ε, |⟨u,v⟩| ≤ (∥u∥ + δ)(∥v∥ + ε)
module _ {l1 l2 : Level} (V : ℂ-Inner-Product-Space l1 l2) where abstract approx-cauchy-schwarz-inequality-ℂ-Inner-Product-Space : (u v : type-ℂ-Inner-Product-Space V) (δ ε : ℚ⁺) → leq-ℝ ( magnitude-ℂ (inner-product-ℂ-Inner-Product-Space V u v)) ( (norm-ℂ-Inner-Product-Space V u +ℝ real-ℚ⁺ δ) *ℝ (norm-ℂ-Inner-Product-Space V v +ℝ real-ℚ⁺ ε)) approx-cauchy-schwarz-inequality-ℂ-Inner-Product-Space u v δ ε = let ∥u∥+δ = add-nonnegative-positive-ℝ ( nonnegative-norm-ℂ-Inner-Product-Space V u) ( positive-real-ℚ⁺ δ) ∥v∥+ε = add-nonnegative-positive-ℝ ( nonnegative-norm-ℂ-Inner-Product-Space V v) ( positive-real-ℚ⁺ ε) open inequality-reasoning-Large-Poset ℝ-Large-Poset _ℝ*V_ = mul-real-ℂ-Inner-Product-Space V _·V_ = inner-product-ℂ-Inner-Product-Space V in chain-of-inequalities magnitude-ℂ (u ·V v) ≤ real-ℝ⁺ ∥u∥+δ *ℝ (real-inv-ℝ⁺ ∥u∥+δ *ℝ magnitude-ℂ (u ·V v)) by leq-sim-ℝ' (cancel-left-mul-div-ℝ⁺ _ _) ≤ ( real-ℝ⁺ ∥u∥+δ) *ℝ ( magnitude-ℂ (complex-ℝ (real-inv-ℝ⁺ ∥u∥+δ) *ℂ (u ·V v))) by leq-eq-ℝ ( ap-mul-ℝ ( refl) ( inv (magnitude-left-mul-complex-ℝ⁺ (inv-ℝ⁺ ∥u∥+δ) _))) ≤ ( real-ℝ⁺ ∥u∥+δ) *ℝ ( magnitude-ℂ ((real-inv-ℝ⁺ ∥u∥+δ ℝ*V u) ·V v)) by leq-eq-ℝ ( ap-mul-ℝ ( refl) ( ap ( magnitude-ℂ) ( inv ( preserves-scalar-mul-left-inner-product-ℂ-Inner-Product-Space ( V) ( _) ( u) ( v))))) ≤ ( real-ℝ⁺ ∥u∥+δ) *ℝ ( ( real-ℝ⁺ ∥v∥+ε) *ℝ ( ( real-inv-ℝ⁺ ∥v∥+ε) *ℝ ( magnitude-ℂ ((real-inv-ℝ⁺ ∥u∥+δ ℝ*V u) ·V v)))) by leq-sim-ℝ' ( preserves-sim-left-mul-ℝ _ _ _ ( cancel-left-mul-div-ℝ⁺ ∥v∥+ε (magnitude-ℂ _))) ≤ ( real-ℝ⁺ ∥u∥+δ) *ℝ ( ( real-ℝ⁺ ∥v∥+ε) *ℝ ( magnitude-ℂ ( ( real-inv-ℝ⁺ ∥u∥+δ ℝ*V u) ·V ( real-inv-ℝ⁺ ∥v∥+ε ℝ*V v)))) by leq-eq-ℝ ( ap-mul-ℝ ( refl) ( ap-mul-ℝ ( refl) ( equational-reasoning ( real-inv-ℝ⁺ ∥v∥+ε) *ℝ ( magnitude-ℂ ((real-inv-ℝ⁺ ∥u∥+δ ℝ*V u) ·V v)) = magnitude-ℂ ( ( complex-ℝ (real-inv-ℝ⁺ ∥v∥+ε)) *ℂ ( (real-inv-ℝ⁺ ∥u∥+δ ℝ*V u) ·V v)) by inv (magnitude-left-mul-complex-ℝ⁺ (inv-ℝ⁺ ∥v∥+ε) _) = magnitude-ℂ ( ( real-inv-ℝ⁺ ∥u∥+δ ℝ*V u) ·V ( real-inv-ℝ⁺ ∥v∥+ε ℝ*V v)) by ap ( magnitude-ℂ) ( inv ( preserves-scalar-mul-real-right-inner-product-ℂ-Inner-Product-Space ( V) ( real-inv-ℝ⁺ ∥v∥+ε) ( real-inv-ℝ⁺ ∥u∥+δ ℝ*V u) ( v)))))) ≤ real-ℝ⁺ ∥u∥+δ *ℝ (real-ℝ⁺ ∥v∥+ε *ℝ one-ℝ) by preserves-leq-left-mul-ℝ⁺ ( ∥u∥+δ) ( preserves-leq-left-mul-ℝ⁺ ( ∥v∥+ε) ( leq-one-magnitude-inner-product-leq-one-norm-ℂ-Inner-Product-Space ( V) ( real-inv-ℝ⁺ ∥u∥+δ ℝ*V u) ( real-inv-ℝ⁺ ∥v∥+ε ℝ*V v) ( leq-norm-mul-inv-norm-plus-positive-rational-ℂ-Inner-Product-Space ( V) ( u) ( δ)) ( leq-norm-mul-inv-norm-plus-positive-rational-ℂ-Inner-Product-Space ( V) ( v) ( ε)))) ≤ real-ℝ⁺ ∥u∥+δ *ℝ real-ℝ⁺ ∥v∥+ε by leq-eq-ℝ (ap-mul-ℝ refl (right-unit-law-mul-ℝ _))
For any u, v in a complex inner product space, |⟨u,v⟩| ≤ ∥u∥ ∥v∥
module _ {l1 l2 : Level} (V : ℂ-Inner-Product-Space l1 l2) where abstract cauchy-schwarz-inequality-ℂ-Inner-Product-Space : (u v : type-ℂ-Inner-Product-Space V) → leq-ℝ ( magnitude-ℂ (inner-product-ℂ-Inner-Product-Space V u v)) ( norm-ℂ-Inner-Product-Space V u *ℝ norm-ℂ-Inner-Product-Space V v) cauchy-schwarz-inequality-ℂ-Inner-Product-Space u v = saturated-leq-mul-ℝ⁰⁺ ( nonnegative-magnitude-ℂ (inner-product-ℂ-Inner-Product-Space V u v)) ( nonnegative-norm-ℂ-Inner-Product-Space V u) ( nonnegative-norm-ℂ-Inner-Product-Space V v) ( approx-cauchy-schwarz-inequality-ℂ-Inner-Product-Space V u v)
See also
External links
- Cauchy-schwarz inequality at Wikidata
- Cauchy-Schwarz inequality on Wikipedia
References
- [Wie]
- Freek Wiedijk. Formalizing 100 theorems. URL: https://www.cs.ru.nl/~freek/100/.
Recent changes
- 2026-01-11. Louis Wasserman. Cauchy-Schwarz inequality in complex inner product spaces (#1793).