Decidability of dependent pair types
Content created by Fredrik Bakke, Egbert Rijke and Jonathan Prieto-Cubides.
Created on 2022-02-14.
Last modified on 2025-01-07.
module foundation.decidable-dependent-pair-types where
Imports
open import foundation.decidable-types open import foundation.dependent-pair-types open import foundation.maybe open import foundation.type-arithmetic-coproduct-types open import foundation.type-arithmetic-unit-type open import foundation.uniformly-decidable-type-families open import foundation.universe-levels open import foundation-core.coproduct-types open import foundation-core.equivalences open import foundation-core.function-types open import foundation-core.functoriality-dependent-pair-types open import foundation-core.negation
Idea
We describe conditions under which dependent sums are decidable
Properites
Dependent sums of a uniformly decidable family of types
is-decidable-Σ-uniformly-decidable-family : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} → is-decidable A → is-uniformly-decidable-family B → is-decidable (Σ A B) is-decidable-Σ-uniformly-decidable-family (inl a) (inl b) = inl (a , b a) is-decidable-Σ-uniformly-decidable-family (inl a) (inr b) = inr (λ x → b (pr1 x) (pr2 x)) is-decidable-Σ-uniformly-decidable-family (inr a) _ = inr (λ x → a (pr1 x))
Decidability of dependent sums over coproducts
is-decidable-Σ-coproduct : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (C : A + B → UU l3) → is-decidable (Σ A (C ∘ inl)) → is-decidable (Σ B (C ∘ inr)) → is-decidable (Σ (A + B) C) is-decidable-Σ-coproduct {A = A} {B} C dA dB = is-decidable-equiv ( right-distributive-Σ-coproduct A B C) ( is-decidable-coproduct dA dB)
Decidability of dependent sums over Maybe
is-decidable-Σ-Maybe : {l1 l2 : Level} {A : UU l1} {B : Maybe A → UU l2} → is-decidable (Σ A (B ∘ unit-Maybe)) → is-decidable (B exception-Maybe) → is-decidable (Σ (Maybe A) B) is-decidable-Σ-Maybe {A = A} {B} dA de = is-decidable-Σ-coproduct B dA ( is-decidable-equiv (left-unit-law-Σ (B ∘ inr)) de)
Decidability of dependent sums over equivalences
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : A → UU l3} {D : B → UU l4} (e : A ≃ B) (f : (x : A) → C x ≃ D (map-equiv e x)) where is-decidable-Σ-equiv : is-decidable (Σ A C) → is-decidable (Σ B D) is-decidable-Σ-equiv = is-decidable-equiv' (equiv-Σ D e f) is-decidable-Σ-equiv' : is-decidable (Σ B D) → is-decidable (Σ A C) is-decidable-Σ-equiv' = is-decidable-equiv (equiv-Σ D e f)
Recent changes
- 2025-01-07. Fredrik Bakke. Logic (#1226).
- 2024-02-06. Fredrik Bakke. Rename
(co)prod
to(co)product
(#1017). - 2023-06-10. Egbert Rijke. cleaning up transport and dependent identifications files (#650).
- 2023-06-08. Fredrik Bakke. Remove empty
foundation
modules and replace them by their core counterparts (#644). - 2023-03-14. Fredrik Bakke. Remove all unused imports (#502).