Decidability of dependent pair types

Content created by Fredrik Bakke, Egbert Rijke and Jonathan Prieto-Cubides.

Created on 2022-02-14.
Last modified on 2025-08-14.

module foundation.decidable-dependent-pair-types where
Imports
open import foundation.decidable-types
open import foundation.dependent-pair-types
open import foundation.double-negation-dense-equality
open import foundation.irrefutable-equality
open import foundation.maybe
open import foundation.propositional-truncations
open import foundation.transport-along-identifications
open import foundation.type-arithmetic-coproduct-types
open import foundation.type-arithmetic-unit-type
open import foundation.uniformly-decidable-type-families
open import foundation.universe-levels

open import foundation-core.coproduct-types
open import foundation-core.equivalences
open import foundation-core.function-types
open import foundation-core.functoriality-dependent-pair-types
open import foundation-core.negation

open import logic.propositionally-decidable-types

Idea

We describe conditions under which dependent sums are decidable

Properties

Decidability of dependent sums over equivalences

module _
  {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : A  UU l3} {D : B  UU l4}
  (e : A  B) (f : (x : A)  C x  D (map-equiv e x))
  where

  is-decidable-Σ-equiv : is-decidable (Σ A C)  is-decidable (Σ B D)
  is-decidable-Σ-equiv = is-decidable-equiv' (equiv-Σ D e f)

  is-decidable-Σ-equiv' : is-decidable (Σ B D)  is-decidable (Σ A C)
  is-decidable-Σ-equiv' = is-decidable-equiv (equiv-Σ D e f)

Dependent sums of a uniformly decidable family of types

is-decidable-Σ-uniformly-decidable-family :
  {l1 l2 : Level} {A : UU l1} {B : A  UU l2} 
  is-decidable A 
  is-uniformly-decidable-family B 
  is-decidable (Σ A B)
is-decidable-Σ-uniformly-decidable-family (inl a) (inl b) =
  inl (a , b a)
is-decidable-Σ-uniformly-decidable-family (inl a) (inr b) =
  inr  x  b (pr1 x) (pr2 x))
is-decidable-Σ-uniformly-decidable-family (inr a) _ =
  inr  x  a (pr1 x))

Decidability of dependent sums over coproducts

is-decidable-Σ-coproduct :
  {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (C : A + B  UU l3) 
  is-decidable (Σ A (C  inl))  is-decidable (Σ B (C  inr)) 
  is-decidable (Σ (A + B) C)
is-decidable-Σ-coproduct {A = A} {B} C dA dB =
  is-decidable-equiv
    ( right-distributive-Σ-coproduct A B C)
    ( is-decidable-coproduct dA dB)

Decidability of dependent sums over Maybe

is-decidable-Σ-Maybe :
  {l1 l2 : Level} {A : UU l1} {B : Maybe A  UU l2} 
  is-decidable (Σ A (B  unit-Maybe)) 
  is-decidable (B exception-Maybe) 
  is-decidable (Σ (Maybe A) B)
is-decidable-Σ-Maybe {A = A} {B} dA de =
  is-decidable-Σ-coproduct B dA
    ( is-decidable-equiv (left-unit-law-Σ (B  inr)) de)

Decidability of dependent sums over bases with double negation dense equality

This is a special case of the more general fact that a type has decidable sums if and only if its totally separated reflection does, and totally separated types have double negation stable equality. TypeTopology.TotallySeparated [Esc]

module _
  {l1 l2 : Level} {A : UU l1} {B : A  UU l2}
  (H : has-double-negation-dense-equality A)
  where

  is-inhabited-or-empty-Σ-has-double-negation-dense-equality-base :
    is-inhabited-or-empty A 
    ((x : A)  is-inhabited-or-empty (B x)) 
    is-inhabited-or-empty (Σ A B)
  is-inhabited-or-empty-Σ-has-double-negation-dense-equality-base dA dB =
    elim-is-inhabited-or-empty-Prop
      ( is-inhabited-or-empty-Prop (Σ A B))
      ( λ a 
        elim-is-inhabited-or-empty-Prop
          ( is-inhabited-or-empty-Prop (Σ A B))
          ( λ b  inl (unit-trunc-Prop (a , b)))
          ( λ nb  inr  x  H (pr1 x) a  p  nb (tr B p (pr2 x)))))
          ( dB a))
      ( λ na  inr (map-neg pr1 na))
      ( dA)

See foundation.decidable-types for the untruncated version.

References

[Esc]
Martín Hötzel Escardó and contributors. TypeTopology. GitHub repository. Agda development. URL: https://github.com/martinescardo/TypeTopology.

Recent changes