Sharp codiscrete maps
Content created by Fredrik Bakke.
Created on 2023-11-24.
Last modified on 2024-09-06.
{-# OPTIONS --cohesion --flat-split #-} module modal-type-theory.sharp-codiscrete-maps where
Imports
open import foundation.fibers-of-maps open import foundation.propositions open import foundation.universe-levels open import modal-type-theory.sharp-codiscrete-types
Idea
A map is said to be sharp codiscrete¶ if its fibers are sharp codiscrete.
Definition
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) where is-sharp-codiscrete-map : UU (l1 ⊔ l2) is-sharp-codiscrete-map = is-sharp-codiscrete-family (fiber f) is-sharp-codiscrete-map-Prop : Prop (l1 ⊔ l2) is-sharp-codiscrete-map-Prop = is-sharp-codiscrete-family-Prop (fiber f) is-prop-is-sharp-codiscrete-map : is-prop is-sharp-codiscrete-map is-prop-is-sharp-codiscrete-map = is-prop-type-Prop is-sharp-codiscrete-map-Prop
Recent changes
- 2024-09-06. Fredrik Bakke. Basic properties of the flat modality (#1078).
- 2023-11-24. Fredrik Bakke. Modal type theory (#701).