Automorphisms
Content created by Fredrik Bakke, Egbert Rijke and Jonathan Prieto-Cubides.
Created on 2022-03-02.
Last modified on 2024-02-19.
module foundation.automorphisms where
Imports
open import foundation.dependent-pair-types open import foundation.universe-levels open import foundation-core.equivalences open import foundation-core.sets open import structured-types.pointed-types
Idea
An automorphism on a type A
is an equivalence A ≃ A
. We will just reuse the
infrastructure of equivalences for automorphisms.
Definitions
The type of automorphisms on a type
Aut : {l : Level} → UU l → UU l Aut Y = Y ≃ Y is-set-Aut : {l : Level} {A : UU l} → is-set A → is-set (Aut A) is-set-Aut H = is-set-equiv-is-set H H Aut-Set : {l : Level} → Set l → Set l pr1 (Aut-Set A) = Aut (type-Set A) pr2 (Aut-Set A) = is-set-Aut (is-set-type-Set A) Aut-Pointed-Type : {l : Level} → UU l → Pointed-Type l pr1 (Aut-Pointed-Type A) = Aut A pr2 (Aut-Pointed-Type A) = id-equiv
Recent changes
- 2024-02-19. Fredrik Bakke. Additions for coherently invertible maps (#1024).
- 2023-06-08. Fredrik Bakke. Remove empty
foundation
modules and replace them by their core counterparts (#644). - 2023-06-07. Fredrik Bakke. Move public imports before “Imports” block (#642).
- 2023-03-21. Fredrik Bakke. Formatting fixes (#530).
- 2023-03-10. Fredrik Bakke. Additions to
fix-import
(#497).