Large function commutative monoids
Content created by Louis Wasserman.
Created on 2025-11-16.
Last modified on 2025-11-16.
module group-theory.large-function-commutative-monoids where
Imports
open import foundation.function-extensionality open import foundation.universe-levels open import group-theory.large-commutative-monoids open import group-theory.large-function-monoids
Idea
Given a large commutative monoid
M and an arbitrary type A, A → M forms a large commutative monoid.
Definition
module _ {l1 : Level} {α : Level → Level} {β : Level → Level → Level} (A : UU l1) (M : Large-Commutative-Monoid α β) where function-Large-Commutative-Monoid : Large-Commutative-Monoid (λ l → l1 ⊔ α l) (λ l2 l3 → l1 ⊔ β l2 l3) large-monoid-Large-Commutative-Monoid function-Large-Commutative-Monoid = function-Large-Monoid A (large-monoid-Large-Commutative-Monoid M) commutative-mul-Large-Commutative-Monoid function-Large-Commutative-Monoid f g = eq-htpy ( λ a → commutative-mul-Large-Commutative-Monoid M (f a) (g a))
Recent changes
- 2025-11-16. Louis Wasserman. Large function commutative rings (#1719).