Totally bounded subspaces of metric spaces
Content created by Fredrik Bakke and Louis Wasserman.
Created on 2025-09-11.
Last modified on 2025-09-24.
module metric-spaces.totally-bounded-subspaces-metric-spaces where
Imports
open import foundation.cartesian-products-subtypes open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.images-subtypes open import foundation.logical-equivalences open import foundation.subtypes open import foundation.universe-levels open import metric-spaces.cartesian-products-metric-spaces open import metric-spaces.metric-spaces open import metric-spaces.subspaces-metric-spaces open import metric-spaces.totally-bounded-metric-spaces open import metric-spaces.uniformly-continuous-functions-metric-spaces
Idea
A totally bounded¶ subspace of a metric space is a subspace that is totally bounded.
Definition
totally-bounded-subspace-Metric-Space : {l1 l2 : Level} (l3 l4 : Level) → Metric-Space l1 l2 → UU (l1 ⊔ l2 ⊔ lsuc l3 ⊔ lsuc l4) totally-bounded-subspace-Metric-Space l3 l4 X = Σ ( subset-Metric-Space l3 X) ( λ S → is-totally-bounded-Metric-Space l4 (subspace-Metric-Space X S)) module _ {l1 l2 l3 l4 : Level} (X : Metric-Space l1 l2) (S : totally-bounded-subspace-Metric-Space l3 l4 X) where subset-totally-bounded-subspace-Metric-Space : subset-Metric-Space l3 X subset-totally-bounded-subspace-Metric-Space = pr1 S type-totally-bounded-subspace-Metric-Space : UU (l1 ⊔ l3) type-totally-bounded-subspace-Metric-Space = type-subtype subset-totally-bounded-subspace-Metric-Space inclusion-totally-bounded-subspace-Metric-Space : type-totally-bounded-subspace-Metric-Space → type-Metric-Space X inclusion-totally-bounded-subspace-Metric-Space = inclusion-subtype subset-totally-bounded-subspace-Metric-Space subspace-totally-bounded-subspace-Metric-Space : Metric-Space (l1 ⊔ l3) l2 subspace-totally-bounded-subspace-Metric-Space = subspace-Metric-Space X subset-totally-bounded-subspace-Metric-Space is-totally-bounded-subspace-totally-bounded-subspace-Metric-Space : is-totally-bounded-Metric-Space ( l4) ( subspace-totally-bounded-subspace-Metric-Space) is-totally-bounded-subspace-totally-bounded-subspace-Metric-Space = pr2 S
Properties
The image of a totally bounded subspace under a uniformly continuous function
im-uniformly-continuous-function-totally-bounded-subspace-Metric-Space : {l1 l2 l3 l4 l5 l6 : Level} → (X : Metric-Space l1 l2) (Y : Metric-Space l3 l4) → (f : uniformly-continuous-function-Metric-Space X Y) → totally-bounded-subspace-Metric-Space l5 l6 X → totally-bounded-subspace-Metric-Space (l1 ⊔ l3 ⊔ l5) (l1 ⊔ l3 ⊔ l5 ⊔ l6) Y im-uniformly-continuous-function-totally-bounded-subspace-Metric-Space X Y f (S , tbS) = ( im-subtype (map-uniformly-continuous-function-Metric-Space X Y f) S , is-totally-bounded-im-uniformly-continuous-function-is-totally-bounded-Metric-Space ( subspace-Metric-Space X S) ( Y) ( tbS) ( comp-uniformly-continuous-function-Metric-Space ( subspace-Metric-Space X S) ( X) ( Y) ( f) ( uniformly-continuous-inclusion-subspace-Metric-Space X S)))
Totally bounded subspaces of metric spaces are closed under Cartesian products
product-totally-bounded-subspace-Metric-Space : {l1 l2 l3 l4 l5 l6 l7 l8 : Level} → (X : Metric-Space l1 l2) (Y : Metric-Space l3 l4) → (S : totally-bounded-subspace-Metric-Space l5 l6 X) → (T : totally-bounded-subspace-Metric-Space l7 l8 Y) → totally-bounded-subspace-Metric-Space ( l5 ⊔ l7) ( l1 ⊔ l3 ⊔ l5 ⊔ l6 ⊔ l7 ⊔ l8) ( product-Metric-Space X Y) product-totally-bounded-subspace-Metric-Space X Y (S , tbS) (T , tbT) = ( product-subtype S T , preserves-is-totally-bounded-isometric-equiv-Metric-Space ( product-Metric-Space ( subspace-Metric-Space X S) ( subspace-Metric-Space Y T)) ( subspace-Metric-Space (product-Metric-Space X Y) (product-subtype S T)) ( is-totally-bounded-product-Totally-Bounded-Metric-Space ( subspace-Metric-Space X S , tbS) ( subspace-Metric-Space Y T , tbT)) ( inv-equiv (equiv-product-subtype S T) , (λ _ _ _ → id-iff)))
External links
- Totally bounded space at Wikidata
Recent changes
- 2025-09-24. Fredrik Bakke. Fix Agda definition pointers in concept macros (#1549).
- 2025-09-11. Louis Wasserman. Inhabited totally bounded subspaces of metric spaces (#1542).