Joins of types
Content created by Fredrik Bakke, Egbert Rijke and Jonathan Prieto-Cubides.
Created on 2022-05-13.
Last modified on 2024-04-25.
module synthetic-homotopy-theory.joins-of-types where
Imports
open import foundation.action-on-identifications-functions open import foundation.cartesian-product-types open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.disjunction open import foundation.empty-types open import foundation.equivalences open import foundation.function-types open import foundation.homotopies open import foundation.identity-types open import foundation.logical-equivalences open import foundation.propositions open import foundation.type-arithmetic-cartesian-product-types open import foundation.type-arithmetic-dependent-pair-types open import foundation.type-arithmetic-empty-type open import foundation.type-arithmetic-unit-type open import foundation.unit-type open import foundation.universe-levels open import foundation.whiskering-homotopies-composition open import synthetic-homotopy-theory.cocones-under-spans open import synthetic-homotopy-theory.dependent-cocones-under-spans open import synthetic-homotopy-theory.pushouts open import synthetic-homotopy-theory.universal-property-pushouts
Idea
The join¶ of A
and B
is the
pushout of the
span A ← A × B → B
.
Definitions
The standard join of types
join : {l1 l2 : Level} → UU l1 → UU l2 → UU (l1 ⊔ l2) join A B = pushout {A = A} {B = B} pr1 pr2 infixr 15 _*_ _*_ = join module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where cocone-join : cocone {A = A} {B = B} pr1 pr2 (A * B) cocone-join = cocone-pushout pr1 pr2 inl-join : A → A * B inl-join = horizontal-map-cocone pr1 pr2 cocone-join inr-join : B → A * B inr-join = vertical-map-cocone pr1 pr2 cocone-join glue-join : (t : A × B) → inl-join (pr1 t) = inr-join (pr2 t) glue-join = coherence-square-cocone pr1 pr2 cocone-join
The universal property of the join
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where up-join : universal-property-pushout {A = A} {B} pr1 pr2 cocone-join up-join = up-pushout pr1 pr2 equiv-up-join : {l : Level} (X : UU l) → (A * B → X) ≃ cocone pr1 pr2 X equiv-up-join = equiv-up-pushout pr1 pr2
The dependent cogap map of the join
module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {P : A * B → UU l3} (c : dependent-cocone pr1 pr2 cocone-join P) where dependent-cogap-join : (x : A * B) → P x dependent-cogap-join = dependent-cogap pr1 pr2 {P = P} c compute-inl-dependent-cogap-join : dependent-cogap-join ∘ inl-join ~ horizontal-map-dependent-cocone pr1 pr2 cocone-join P c compute-inl-dependent-cogap-join = compute-inl-dependent-cogap pr1 pr2 c compute-inr-dependent-cogap-join : dependent-cogap-join ∘ inr-join ~ vertical-map-dependent-cocone pr1 pr2 cocone-join P c compute-inr-dependent-cogap-join = compute-inr-dependent-cogap pr1 pr2 c compute-glue-dependent-cogap-join : coherence-htpy-dependent-cocone pr1 pr2 cocone-join P ( dependent-cocone-map pr1 pr2 cocone-join P dependent-cogap-join) ( c) ( compute-inl-dependent-cogap-join) ( compute-inr-dependent-cogap-join) compute-glue-dependent-cogap-join = compute-glue-dependent-cogap pr1 pr2 c
The cogap map of the join
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where cogap-join : {l3 : Level} (X : UU l3) → cocone pr1 pr2 X → A * B → X cogap-join X = cogap pr1 pr2 compute-inl-cogap-join : {l3 : Level} {X : UU l3} (c : cocone pr1 pr2 X) → cogap-join X c ∘ inl-join ~ horizontal-map-cocone pr1 pr2 c compute-inl-cogap-join = compute-inl-cogap pr1 pr2 compute-inr-cogap-join : {l3 : Level} {X : UU l3} (c : cocone pr1 pr2 X) → cogap-join X c ∘ inr-join ~ vertical-map-cocone pr1 pr2 c compute-inr-cogap-join = compute-inr-cogap pr1 pr2 compute-glue-cogap-join : {l3 : Level} {X : UU l3} (c : cocone pr1 pr2 X) → statement-coherence-htpy-cocone pr1 pr2 ( cocone-map pr1 pr2 cocone-join (cogap-join X c)) ( c) ( compute-inl-cogap-join c) ( compute-inr-cogap-join c) compute-glue-cogap-join = compute-glue-cogap pr1 pr2
Properties
The left unit law for joins
is-equiv-inr-join-empty : {l : Level} (X : UU l) → is-equiv (inr-join {A = empty} {B = X}) is-equiv-inr-join-empty X = is-equiv-universal-property-pushout ( pr1) ( pr2) ( cocone-join) ( is-equiv-pr1-product-empty X) ( up-join) left-unit-law-join : {l : Level} (X : UU l) → X ≃ (empty * X) pr1 (left-unit-law-join X) = inr-join pr2 (left-unit-law-join X) = is-equiv-inr-join-empty X is-equiv-inr-join-is-empty : {l1 l2 : Level} {A : UU l1} {B : UU l2} → is-empty A → is-equiv (inr-join {A = A} {B = B}) is-equiv-inr-join-is-empty {A = A} {B = B} is-empty-A = is-equiv-universal-property-pushout ( pr1) ( pr2) ( cocone-join) ( is-equiv-pr1-product-is-empty A B is-empty-A) ( up-join) left-unit-law-join-is-empty : {l1 l2 : Level} {A : UU l1} {B : UU l2} → is-empty A → B ≃ (A * B) pr1 (left-unit-law-join-is-empty is-empty-A) = inr-join pr2 (left-unit-law-join-is-empty is-empty-A) = is-equiv-inr-join-is-empty is-empty-A
The right unit law for joins
is-equiv-inl-join-empty : {l : Level} (X : UU l) → is-equiv (inl-join {A = X} {B = empty}) is-equiv-inl-join-empty X = is-equiv-universal-property-pushout' ( pr1) ( pr2) ( cocone-join) ( is-equiv-pr2-product-empty X) ( up-join) right-unit-law-join : {l : Level} (X : UU l) → X ≃ (X * empty) pr1 (right-unit-law-join X) = inl-join pr2 (right-unit-law-join X) = is-equiv-inl-join-empty X is-equiv-inl-join-is-empty : {l1 l2 : Level} {A : UU l1} {B : UU l2} → is-empty B → is-equiv (inl-join {A = A} {B = B}) is-equiv-inl-join-is-empty {A = A} {B = B} is-empty-B = is-equiv-universal-property-pushout' ( pr1) ( pr2) ( cocone-join) ( is-equiv-pr2-product-is-empty A B is-empty-B) ( up-join) right-unit-law-join-is-empty : {l1 l2 : Level} {A : UU l1} {B : UU l2} → is-empty B → A ≃ (A * B) pr1 (right-unit-law-join-is-empty is-empty-B) = inl-join pr2 (right-unit-law-join-is-empty is-empty-B) = is-equiv-inl-join-is-empty is-empty-B map-inv-right-unit-law-join-is-empty : {l1 l2 : Level} {A : UU l1} {B : UU l2} → is-empty B → A * B → A map-inv-right-unit-law-join-is-empty H = map-inv-equiv (right-unit-law-join-is-empty H)
The left zero law for joins
is-equiv-inl-join-unit : {l : Level} (X : UU l) → is-equiv (inl-join {A = unit} {B = X}) is-equiv-inl-join-unit X = is-equiv-universal-property-pushout' ( pr1) ( pr2) ( cocone-join) ( is-equiv-map-left-unit-law-product) ( up-join) left-zero-law-join : {l : Level} (X : UU l) → is-contr (unit * X) left-zero-law-join X = is-contr-equiv' ( unit) ( inl-join , is-equiv-inl-join-unit X) ( is-contr-unit) is-equiv-inl-join-is-contr : {l1 l2 : Level} (A : UU l1) (B : UU l2) → is-contr A → is-equiv (inl-join {A = A} {B = B}) is-equiv-inl-join-is-contr A B is-contr-A = is-equiv-universal-property-pushout' ( pr1) ( pr2) ( cocone-join) ( is-equiv-pr2-product-is-contr is-contr-A) ( up-join) left-zero-law-join-is-contr : {l1 l2 : Level} (A : UU l1) (B : UU l2) → is-contr A → is-contr (A * B) left-zero-law-join-is-contr A B is-contr-A = is-contr-equiv' ( A) ( inl-join , is-equiv-inl-join-is-contr A B is-contr-A) ( is-contr-A)
The right zero law for joins
is-equiv-inr-join-unit : {l : Level} (X : UU l) → is-equiv (inr-join {A = X} {B = unit}) is-equiv-inr-join-unit X = is-equiv-universal-property-pushout ( pr1) ( pr2) ( cocone-join) ( is-equiv-map-right-unit-law-product) ( up-join) right-zero-law-join : {l : Level} (X : UU l) → is-contr (X * unit) right-zero-law-join X = is-contr-equiv' ( unit) ( inr-join , is-equiv-inr-join-unit X) ( is-contr-unit) is-equiv-inr-join-is-contr : {l1 l2 : Level} (A : UU l1) (B : UU l2) → is-contr B → is-equiv (inr-join {A = A} {B = B}) is-equiv-inr-join-is-contr A B is-contr-B = is-equiv-universal-property-pushout ( pr1) ( pr2) ( cocone-join) ( is-equiv-pr1-is-contr (λ _ → is-contr-B)) ( up-join) right-zero-law-join-is-contr : {l1 l2 : Level} (A : UU l1) (B : UU l2) → is-contr B → is-contr (A * B) right-zero-law-join-is-contr A B is-contr-B = is-contr-equiv' ( B) ( inr-join , is-equiv-inr-join-is-contr A B is-contr-B) ( is-contr-B)
The join of propositions is a proposition
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where is-proof-irrelevant-join-is-proof-irrelevant : is-proof-irrelevant A → is-proof-irrelevant B → is-proof-irrelevant (A * B) is-proof-irrelevant-join-is-proof-irrelevant is-proof-irrelevant-A is-proof-irrelevant-B = cogap-join ( is-contr (A * B)) ( ( left-zero-law-join-is-contr A B ∘ is-proof-irrelevant-A) , ( right-zero-law-join-is-contr A B ∘ is-proof-irrelevant-B) , ( λ (a , b) → center ( is-property-is-contr ( left-zero-law-join-is-contr A B (is-proof-irrelevant-A a)) ( right-zero-law-join-is-contr A B (is-proof-irrelevant-B b))))) is-prop-join-is-prop : is-prop A → is-prop B → is-prop (A * B) is-prop-join-is-prop is-prop-A is-prop-B = is-prop-is-proof-irrelevant ( is-proof-irrelevant-join-is-proof-irrelevant ( is-proof-irrelevant-is-prop is-prop-A) ( is-proof-irrelevant-is-prop is-prop-B)) module _ {l1 l2 : Level} (P : Prop l1) (Q : Prop l2) where join-Prop : Prop (l1 ⊔ l2) pr1 join-Prop = (type-Prop P) * (type-Prop Q) pr2 join-Prop = is-prop-join-is-prop (is-prop-type-Prop P) (is-prop-type-Prop Q) type-join-Prop : UU (l1 ⊔ l2) type-join-Prop = type-Prop join-Prop is-prop-type-join-Prop : is-prop type-join-Prop is-prop-type-join-Prop = is-prop-type-Prop join-Prop inl-join-Prop : type-hom-Prop P join-Prop inl-join-Prop = inl-join inr-join-Prop : type-hom-Prop Q join-Prop inr-join-Prop = inr-join
Disjunction is the join of propositions
module _ {l1 l2 : Level} (A : Prop l1) (B : Prop l2) where cocone-disjunction : cocone pr1 pr2 (type-disjunction-Prop A B) pr1 cocone-disjunction = inl-disjunction pr1 (pr2 cocone-disjunction) = inr-disjunction pr2 (pr2 cocone-disjunction) (a , b) = eq-is-prop' ( is-prop-disjunction-Prop A B) ( inl-disjunction a) ( inr-disjunction b) map-disjunction-join-Prop : type-join-Prop A B → type-disjunction-Prop A B map-disjunction-join-Prop = cogap-join (type-disjunction-Prop A B) cocone-disjunction map-join-disjunction-Prop : type-disjunction-Prop A B → type-join-Prop A B map-join-disjunction-Prop = elim-disjunction ( join-Prop A B) ( inl-join-Prop A B) ( inr-join-Prop A B) is-equiv-map-disjunction-join-Prop : is-equiv map-disjunction-join-Prop is-equiv-map-disjunction-join-Prop = is-equiv-has-converse-is-prop ( is-prop-type-join-Prop A B) ( is-prop-disjunction-Prop A B) ( map-join-disjunction-Prop) equiv-disjunction-join-Prop : (type-join-Prop A B) ≃ (type-disjunction-Prop A B) pr1 equiv-disjunction-join-Prop = map-disjunction-join-Prop pr2 equiv-disjunction-join-Prop = is-equiv-map-disjunction-join-Prop is-equiv-map-join-disjunction-Prop : is-equiv map-join-disjunction-Prop is-equiv-map-join-disjunction-Prop = is-equiv-has-converse-is-prop ( is-prop-disjunction-Prop A B) ( is-prop-type-join-Prop A B) ( map-disjunction-join-Prop) equiv-join-disjunction-Prop : (type-disjunction-Prop A B) ≃ (type-join-Prop A B) pr1 equiv-join-disjunction-Prop = map-join-disjunction-Prop pr2 equiv-join-disjunction-Prop = is-equiv-map-join-disjunction-Prop up-join-disjunction : universal-property-pushout pr1 pr2 cocone-disjunction up-join-disjunction = up-pushout-up-pushout-is-equiv ( pr1) ( pr2) ( cocone-join) ( cocone-disjunction) ( map-disjunction-join-Prop) ( ( λ _ → eq-is-prop (is-prop-disjunction-Prop A B)) , ( λ _ → eq-is-prop (is-prop-disjunction-Prop A B)) , ( λ (a , b) → eq-is-contr ( is-prop-disjunction-Prop A B ( horizontal-map-cocone pr1 pr2 ( cocone-map pr1 pr2 ( cocone-join) ( map-disjunction-join-Prop)) ( a)) ( vertical-map-cocone pr1 pr2 cocone-disjunction b)))) ( is-equiv-map-disjunction-join-Prop) ( up-join)
See also
References
- [Rij17]
- Egbert Rijke. The join construction. 01 2017. arXiv:1701.07538.
Recent changes
- 2024-04-25. Fredrik Bakke. chore: Universal properties of colimits quantify over all universe levels (#1126).
- 2024-04-19. Fredrik Bakke. Rewrite rules for pushouts (#1021).
- 2024-04-11. Fredrik Bakke and Egbert Rijke. Propositional operations (#1008).
- 2024-03-12. Fredrik Bakke. Bibliographies (#1058).
- 2024-02-06. Fredrik Bakke. Rename
(co)prod
to(co)product
(#1017).