Saturation of inequality of real numbers
Content created by Louis Wasserman.
Created on 2025-09-02.
Last modified on 2025-09-02.
{-# OPTIONS --lossy-unification #-} module real-numbers.saturation-inequality-real-numbers where
Imports
open import elementary-number-theory.positive-rational-numbers open import foundation.universe-levels open import real-numbers.addition-real-numbers open import real-numbers.dedekind-real-numbers open import real-numbers.inequality-real-numbers open import real-numbers.rational-real-numbers open import real-numbers.strict-inequality-real-numbers
Idea
If x ≤ y + ε
for real numbers x
and
y
and every
positive rational ε
,
then x ≤ y
.
Despite being a property of inequality of real numbers, this is much easier to prove via strict inequality, so it is moved to its own file to prevent circular dependency.
Proof
module _ {l1 l2 : Level} (x : ℝ l1) (y : ℝ l2) where abstract saturated-leq-ℝ : ((ε : ℚ⁺) → leq-ℝ x (y +ℝ real-ℚ⁺ ε)) → leq-ℝ x y saturated-leq-ℝ H = saturated-le-ℝ x y ( λ ε → concatenate-leq-le-ℝ ( x) ( y +ℝ real-ℚ⁺ (mediant-zero-ℚ⁺ ε)) ( y +ℝ real-ℚ⁺ ε) ( H (mediant-zero-ℚ⁺ ε)) ( preserves-le-left-add-ℝ ( y) ( real-ℚ⁺ (mediant-zero-ℚ⁺ ε)) ( real-ℚ⁺ ε) ( preserves-le-real-ℚ _ _ (le-mediant-zero-ℚ⁺ ε))))
Recent changes
- 2025-09-02. Louis Wasserman. Metric spaces induced by metric functions (#1520).