Saturation of inequality of real numbers
Content created by Louis Wasserman.
Created on 2025-09-02.
Last modified on 2025-11-09.
{-# OPTIONS --lossy-unification #-} module real-numbers.saturation-inequality-real-numbers where
Imports
open import elementary-number-theory.positive-rational-numbers open import elementary-number-theory.strict-inequality-positive-rational-numbers open import foundation.dependent-pair-types open import foundation.empty-types open import foundation.propositional-truncations open import foundation.universe-levels open import real-numbers.addition-real-numbers open import real-numbers.dedekind-real-numbers open import real-numbers.inequality-real-numbers open import real-numbers.rational-real-numbers open import real-numbers.strict-inequalities-addition-and-subtraction-real-numbers open import real-numbers.strict-inequality-real-numbers
Idea
If x ≤ y + ε for real numbers x and
y and every
positive rational ε,
then x ≤ y.
Despite being a property of inequality of real numbers, this is much easier to prove via strict inequality, so it is moved to its own file to prevent circular dependency.
Proof
If x < y + ε for every positive rational ε, then x ≤ y
module _ {l1 l2 : Level} (x : ℝ l1) (y : ℝ l2) where abstract saturated-le-ℝ : ((ε : ℚ⁺) → le-ℝ x (y +ℝ real-ℚ⁺ ε)) → leq-ℝ x y saturated-le-ℝ H = leq-not-le-ℝ y x ( λ y<x → let open do-syntax-trunc-Prop empty-Prop in do (ε , y+ε<x) ← exists-positive-rational-separation-le-ℝ {x = y} {y = x} y<x irreflexive-le-ℝ ( x) ( transitive-le-ℝ x (y +ℝ real-ℚ⁺ ε) x y+ε<x (H ε)))
If x ≤ y + ε for every positive rational ε, then x ≤ y
module _ {l1 l2 : Level} (x : ℝ l1) (y : ℝ l2) where abstract saturated-leq-ℝ : ((ε : ℚ⁺) → leq-ℝ x (y +ℝ real-ℚ⁺ ε)) → leq-ℝ x y saturated-leq-ℝ H = saturated-le-ℝ x y ( λ ε → concatenate-leq-le-ℝ ( x) ( y +ℝ real-ℚ⁺ (mediant-zero-ℚ⁺ ε)) ( y +ℝ real-ℚ⁺ ε) ( H (mediant-zero-ℚ⁺ ε)) ( preserves-le-left-add-ℝ ( y) ( real-ℚ⁺ (mediant-zero-ℚ⁺ ε)) ( real-ℚ⁺ ε) ( preserves-le-real-ℚ (le-mediant-zero-ℚ⁺ ε))))
Recent changes
- 2025-11-09. Louis Wasserman. Cleanups in real numbers (#1675).
- 2025-10-04. Louis Wasserman. Split out operations on positive rational numbers (#1562).
- 2025-09-02. Louis Wasserman. Metric spaces induced by metric functions (#1520).