Saturation of inequality of real numbers

Content created by Louis Wasserman.

Created on 2025-09-02.
Last modified on 2025-11-09.

{-# OPTIONS --lossy-unification #-}

module real-numbers.saturation-inequality-real-numbers where
Imports
open import elementary-number-theory.positive-rational-numbers
open import elementary-number-theory.strict-inequality-positive-rational-numbers

open import foundation.dependent-pair-types
open import foundation.empty-types
open import foundation.propositional-truncations
open import foundation.universe-levels

open import real-numbers.addition-real-numbers
open import real-numbers.dedekind-real-numbers
open import real-numbers.inequality-real-numbers
open import real-numbers.rational-real-numbers
open import real-numbers.strict-inequalities-addition-and-subtraction-real-numbers
open import real-numbers.strict-inequality-real-numbers

Idea

If x ≤ y + ε for real numbers x and y and every positive rational ε, then x ≤ y.

Despite being a property of inequality of real numbers, this is much easier to prove via strict inequality, so it is moved to its own file to prevent circular dependency.

Proof

If x < y + ε for every positive rational ε, then x ≤ y

module _
  {l1 l2 : Level} (x :  l1) (y :  l2)
  where

  abstract
    saturated-le-ℝ : ((ε : ℚ⁺)  le-ℝ x (y +ℝ real-ℚ⁺ ε))  leq-ℝ x y
    saturated-le-ℝ H =
      leq-not-le-ℝ y x
        ( λ y<x 
          let open do-syntax-trunc-Prop empty-Prop
          in do
            (ε , y+ε<x) 
              exists-positive-rational-separation-le-ℝ {x = y} {y = x} y<x
            irreflexive-le-ℝ
              ( x)
              ( transitive-le-ℝ x (y +ℝ real-ℚ⁺ ε) x y+ε<x (H ε)))

If x ≤ y + ε for every positive rational ε, then x ≤ y

module _
  {l1 l2 : Level} (x :  l1) (y :  l2)
  where

  abstract
    saturated-leq-ℝ : ((ε : ℚ⁺)  leq-ℝ x (y +ℝ real-ℚ⁺ ε))  leq-ℝ x y
    saturated-leq-ℝ H =
      saturated-le-ℝ x y
        ( λ ε 
          concatenate-leq-le-ℝ
            ( x)
            ( y +ℝ real-ℚ⁺ (mediant-zero-ℚ⁺ ε))
            ( y +ℝ real-ℚ⁺ ε)
            ( H (mediant-zero-ℚ⁺ ε))
            ( preserves-le-left-add-ℝ
              ( y)
              ( real-ℚ⁺ (mediant-zero-ℚ⁺ ε))
              ( real-ℚ⁺ ε)
              ( preserves-le-real-ℚ (le-mediant-zero-ℚ⁺ ε))))

Recent changes