Upper bounds of chains in posets
Content created by Fredrik Bakke and Egbert Rijke.
Created on 2024-10-20.
Last modified on 2024-11-20.
module order-theory.upper-bounds-chains-posets where
Imports
open import foundation.existential-quantification open import foundation.universe-levels open import foundation-core.function-types open import foundation-core.propositions open import order-theory.chains-posets open import order-theory.posets open import order-theory.upper-bounds-posets
Idea
An
upper bound¶
on a chain C
in a
poset P
is an element x
such that for every
element y
in C
, y ≤ x
holds.
Definition
module _ {l1 l2 l3 : Level} (X : Poset l1 l2) (C : chain-Poset l3 X) where is-upper-bound-chain-prop-Poset : type-Poset X → Prop (l1 ⊔ l2 ⊔ l3) is-upper-bound-chain-prop-Poset = is-upper-bound-family-of-elements-prop-Poset X ( inclusion-type-chain-Poset X C) is-upper-bound-chain-Poset : type-Poset X → UU (l1 ⊔ l2 ⊔ l3) is-upper-bound-chain-Poset = type-Prop ∘ is-upper-bound-chain-prop-Poset has-upper-bound-chain-prop-Poset : Prop (l1 ⊔ l2 ⊔ l3) has-upper-bound-chain-prop-Poset = ∃ (type-Poset X) is-upper-bound-chain-prop-Poset has-upper-bound-chain-Poset : UU (l1 ⊔ l2 ⊔ l3) has-upper-bound-chain-Poset = type-Prop has-upper-bound-chain-prop-Poset
Recent changes
- 2024-11-20. Fredrik Bakke. Two fixed point theorems (#1227).
- 2024-10-20. Fredrik Bakke and Egbert Rijke. Order theory from @spcfox’s modal logic (#1205).