Transitive group actions
Content created by Fredrik Bakke, Jonathan Prieto-Cubides, Egbert Rijke and Elisabeth Stenholm.
Created on 2022-03-18.
Last modified on 2023-11-24.
module group-theory.transitive-group-actions where
Imports
open import foundation.existential-quantification open import foundation.identity-types open import foundation.propositions open import foundation.surjective-maps open import foundation.universe-levels open import group-theory.group-actions open import group-theory.groups
Idea
A group G
is said to act transitively on a
set X
if for every x : X
the map
g ↦ gx : G → X
is surjective. In other words, a group action is transitive if any two elements are in the same orbit.
Definitions
The predicate of being a transitive G
-set
module _ {l1 l2 : Level} (G : Group l1) (X : action-Group G l2) where is-transitive-prop-action-Group : Prop (l1 ⊔ l2) is-transitive-prop-action-Group = Π-Prop ( type-action-Group G X) ( λ x → is-surjective-Prop (λ g → mul-action-Group G X g x)) is-transitive-action-Group : UU (l1 ⊔ l2) is-transitive-action-Group = type-Prop is-transitive-prop-action-Group is-prop-is-transitive-action-Group : is-prop is-transitive-action-Group is-prop-is-transitive-action-Group = is-prop-type-Prop is-transitive-prop-action-Group
External links
- transitive action at Lab
- Transitivity properties of group actions at Wikipedia
- Transitive Group Action at Wolfram MathWorld
- Transitive group action at Groupprops
Recent changes
- 2023-11-24. Fredrik Bakke. The orbit category of a group (#935).
- 2023-11-24. Egbert Rijke. Abelianization (#877).
- 2023-05-01. Fredrik Bakke. Refactor 2, the sequel to refactor (#581).
- 2023-03-13. Jonathan Prieto-Cubides. More maintenance (#506).
- 2023-03-10. Fredrik Bakke. Additions to
fix-import
(#497).