Abstract equations over signatures
Content created by Fredrik Bakke, Fernando Chu and Garrett Figueroa.
Created on 2023-03-20.
Last modified on 2025-10-31.
module universal-algebra.abstract-equations-over-signatures where
Imports
open import foundation.cartesian-product-types open import foundation.dependent-pair-types open import foundation.universe-levels open import universal-algebra.signatures open import universal-algebra.terms-over-signatures
Idea
An
abstract equation¶
over a
single-sorted finitary algebraic signature
σ is a statement of the form “x equals y”, where x and y are
terms over σ. Thus, the data of
an abstract equation is simply two terms over a common signature.
Definitions
Abstract equations
module _ {l1 : Level} (σ : signature l1) where abstract-equation : UU l1 abstract-equation = term σ × term σ lhs-abstract-equation : abstract-equation → term σ lhs-abstract-equation = pr1 rhs-abstract-equation : abstract-equation → term σ rhs-abstract-equation = pr2
Recent changes
- 2025-10-31. Fredrik Bakke. Refactor
universal-algebra(#1657). - 2025-09-05. Garrett Figueroa. Category of algebras of a theory (#1483).
- 2023-04-28. Fredrik Bakke. Miscellaneous refactoring and small additions (#579).
- 2023-03-20. Fernando Chu. Universal algebra first commit (#522).