Dirichlet series of species of types
Content created by Fredrik Bakke, Egbert Rijke and Victor Blanchi.
Created on 2023-06-08.
Last modified on 2025-08-30.
module species.dirichlet-series-species-of-types where
Imports
open import foundation.cartesian-product-types open import foundation.dependent-pair-types open import foundation.universe-levels open import species.species-of-types
Idea
In classical mathematics, the Dirichlet series of a
species of finite inhabited types
T is the formal series in s:
  Σ (n : ℕ∖{0}), (|T({1,...,n})| n^(-s) / n!).
If s is a negative integer,
the categorified version of this formula is
  Σ (F : Finite-Type∖{∅}), T(F) × (S → F).
We can generalize it to species of types as
  Σ (X : UU), (T(X) × (S → X)).
The interesting case is when s is a positive number. The categorified version
of this formula then becomes
  Σ ( n : ℕ∖{0}),
    ( Σ ( F : Type-With-Cardinality-ℕ n),
        ( T(F) × (S → cycle-prime-decomposition-ℕ n)).
We can generalize the two notions to
species of types. Let H : UU → UU be a species
such that for every X , Y : P the following
equivalence is satisfied
H (X × Y) ≃ H X × H Y. Then we can define the
H-Dirichlet series¶
of any species of types T by
  Σ (X : P), (T(X) × (S → H(X))).
The condition on H ensure that all the usual properties of the Dirichlet
series are satisfied.
Definition
module _ {l1 l2 l3 l4 : Level} (H : species-types l1 l2) (C1 : preserves-product-species-types H) (T : species-types l1 l3) (S : UU l4) where dirichlet-series-species-types : UU (lsuc l1 ⊔ l2 ⊔ l3 ⊔ l4) dirichlet-series-species-types = Σ (UU l1) (λ X → (T X) × (S → H (X)))
Recent changes
- 2025-08-30. Fredrik Bakke. Some cleanup of species (#1502).
- 2025-02-14. Fredrik Bakke. Rename UU-FintoType-With-Cardinality-ℕ(#1316).
- 2025-02-11. Fredrik Bakke. Switch from 𝔽toFinite-*(#1312).
- 2023-06-09. Fredrik Bakke. Remove unused imports (#648).
- 2023-06-08. Victor Blanchi, Fredrik Bakke and Egbert Rijke. Product of Dirichlet series (#643).