Relationship between functoriality of tuples and finite sequences

Content created by Louis Wasserman.

Created on 2025-05-14.
Last modified on 2025-05-14.

module lists.functoriality-tuples-finite-sequences where
Imports
open import elementary-number-theory.natural-numbers

open import foundation.action-on-identifications-binary-functions
open import foundation.dependent-pair-types
open import foundation.function-extensionality
open import foundation.function-types
open import foundation.homotopies
open import foundation.identity-types
open import foundation.postcomposition-functions
open import foundation.universe-levels
open import foundation.whiskering-homotopies-composition

open import lists.equivalence-tuples-finite-sequences
open import lists.finite-sequences
open import lists.functoriality-finite-sequences
open import lists.functoriality-tuples
open import lists.tuples

open import univalent-combinatorics.standard-finite-types

Idea

Mapping a function over a tuple is equivalent to mapping the same function over the corresponding finite sequence

Proof

module _
  {l1 l2 : Level} {A : UU l1} {B : UU l2}
  (f : A  B)
  where

  map-tuple-map-fin-sequence :
    (n : ) (v : tuple A n) 
    tuple-fin-sequence
      ( n)
      ( map-fin-sequence n f (fin-sequence-tuple n v)) 
    map-tuple f v
  map-tuple-map-fin-sequence zero-ℕ empty-tuple = refl
  map-tuple-map-fin-sequence (succ-ℕ n) (x  v) =
    eq-Eq-tuple
      ( succ-ℕ n)
      ( tuple-fin-sequence
        ( succ-ℕ n)
        ( map-fin-sequence
          ( succ-ℕ n)
          ( f)
          ( fin-sequence-tuple (succ-ℕ n) (x  v))))
      ( map-tuple f (x  v))
      ( refl ,
        Eq-eq-tuple
          ( n)
          ( tuple-fin-sequence
            ( n)
            ( map-fin-sequence n f (fin-sequence-tuple n v)))
          ( map-tuple f v)
          ( map-tuple-map-fin-sequence n v))

Recent changes