Relationship between functoriality of tuples and finite sequences
Content created by Louis Wasserman.
Created on 2025-05-14.
Last modified on 2025-05-14.
module lists.functoriality-tuples-finite-sequences where
Imports
open import elementary-number-theory.natural-numbers open import foundation.action-on-identifications-binary-functions open import foundation.dependent-pair-types open import foundation.function-extensionality open import foundation.function-types open import foundation.homotopies open import foundation.identity-types open import foundation.postcomposition-functions open import foundation.universe-levels open import foundation.whiskering-homotopies-composition open import lists.equivalence-tuples-finite-sequences open import lists.finite-sequences open import lists.functoriality-finite-sequences open import lists.functoriality-tuples open import lists.tuples open import univalent-combinatorics.standard-finite-types
Idea
Mapping a function over a tuple is equivalent to mapping the same function over the corresponding finite sequence
Proof
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) where map-tuple-map-fin-sequence : (n : ℕ) (v : tuple A n) → tuple-fin-sequence ( n) ( map-fin-sequence n f (fin-sequence-tuple n v)) = map-tuple f v map-tuple-map-fin-sequence zero-ℕ empty-tuple = refl map-tuple-map-fin-sequence (succ-ℕ n) (x ∷ v) = eq-Eq-tuple ( succ-ℕ n) ( tuple-fin-sequence ( succ-ℕ n) ( map-fin-sequence ( succ-ℕ n) ( f) ( fin-sequence-tuple (succ-ℕ n) (x ∷ v)))) ( map-tuple f (x ∷ v)) ( refl , Eq-eq-tuple ( n) ( tuple-fin-sequence ( n) ( map-fin-sequence n f (fin-sequence-tuple n v))) ( map-tuple f v) ( map-tuple-map-fin-sequence n v))
Recent changes
- 2025-05-14. Louis Wasserman. Refactor linear algebra to use “tuples” for what was “vectors” (#1397).