The large ring of complex numbers

Content created by Louis Wasserman.

Created on 2025-11-11.
Last modified on 2025-12-30.

module complex-numbers.large-ring-of-complex-numbers where
Imports
open import commutative-algebra.commutative-rings
open import commutative-algebra.homomorphisms-commutative-rings
open import commutative-algebra.large-commutative-rings

open import complex-numbers.complex-numbers
open import complex-numbers.large-additive-group-of-complex-numbers
open import complex-numbers.multiplication-complex-numbers

open import foundation.dependent-pair-types
open import foundation.identity-types
open import foundation.universe-levels

open import real-numbers.large-ring-of-real-numbers

open import ring-theory.large-rings

Idea

The complex numbers form a large commutative ring under addition and multiplication.

Definition

large-ring-ℂ : Large-Ring lsuc (_⊔_)
large-ring-ℂ =
  make-Large-Ring
    ( large-ab-add-ℂ)
    ( mul-ℂ)
    ( λ _ _ z~z' _ _  preserves-sim-mul-ℂ z~z')
    ( one-ℂ)
    ( associative-mul-ℂ)
    ( left-unit-law-mul-ℂ)
    ( right-unit-law-mul-ℂ)
    ( left-distributive-mul-add-ℂ)
    ( right-distributive-mul-add-ℂ)

large-commutative-ring-ℂ : Large-Commutative-Ring lsuc (_⊔_)
large-commutative-ring-ℂ =
  make-Large-Commutative-Ring
    ( large-ring-ℂ)
    ( commutative-mul-ℂ)

Properties

The commutative ring of complex numbers at a universe level

commutative-ring-ℂ : (l : Level)  Commutative-Ring (lsuc l)
commutative-ring-ℂ =
  commutative-ring-Large-Commutative-Ring large-commutative-ring-ℂ

The canonical ring homomorphism from the real numbers to the complex numbers

hom-ring-complex-ℝ :
  (l : Level) 
  hom-Commutative-Ring (commutative-ring-ℝ l) (commutative-ring-ℂ l)
hom-ring-complex-ℝ l = (hom-add-ab-complex-ℝ l , inv (mul-complex-ℝ _ _) , refl)

Recent changes