The metric space of convergent Cauchy approximations in a metric space
Content created by malarbol.
Created on 2025-05-01.
Last modified on 2025-05-01.
{-# OPTIONS --lossy-unification #-} module metric-spaces.metric-space-of-convergent-cauchy-approximations-metric-spaces where
Imports
open import elementary-number-theory.positive-rational-numbers open import foundation.action-on-identifications-binary-functions open import foundation.action-on-identifications-functions open import foundation.binary-transport open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.transport-along-identifications open import foundation.universe-levels open import metric-spaces.convergent-cauchy-approximations-metric-spaces open import metric-spaces.functions-metric-spaces open import metric-spaces.metric-space-of-cauchy-approximations-metric-spaces open import metric-spaces.metric-spaces open import metric-spaces.saturated-metric-spaces open import metric-spaces.short-functions-metric-spaces open import metric-spaces.subspaces-metric-spaces
Idea
The type of convergent Cauchy approximations in a metric space inherits the metric substructure of the metric space of Cauchy approximations. This is the metric space of convergent Cauchy approximations¶ in a metric space.
Definitions
The metric space of Cauchy approximations in a metric space
module _ {l1 l2 : Level} (A : Metric-Space l1 l2) where metric-space-of-convergent-cauchy-approximations-Metric-Space : Metric-Space (l1 ⊔ l2) l2 metric-space-of-convergent-cauchy-approximations-Metric-Space = subspace-Metric-Space ( metric-space-of-cauchy-approximations-Metric-Space A) ( is-convergent-prop-cauchy-approximation-Metric-Space A)
Properties
The map from a convergent Cauchy approximation in M
to its limit is a short map into the saturated metric space of M
module _ {l1 l2 : Level} (A : Metric-Space l1 l2) where is-short-saturated-limit-convergent-cauchy-approximation-Metric-Space : is-short-function-Metric-Space ( metric-space-of-convergent-cauchy-approximations-Metric-Space A) ( saturate-Metric-Space A) ( limit-convergent-cauchy-approximation-Metric-Space A) is-short-saturated-limit-convergent-cauchy-approximation-Metric-Space ε x y Nxy δ = tr ( λ d → neighborhood-Metric-Space A d ( limit-convergent-cauchy-approximation-Metric-Space A x) ( limit-convergent-cauchy-approximation-Metric-Space A y)) ( lemma-ε-δ-θ-η) ( lemma-neighborhood-limit θ η η') where lemma-neighborhood-limit : (θ η η' : ℚ⁺) → neighborhood-Metric-Space ( A) ( (θ +ℚ⁺ η) +ℚ⁺ ε +ℚ⁺ (θ +ℚ⁺ η')) ( limit-convergent-cauchy-approximation-Metric-Space A x) ( limit-convergent-cauchy-approximation-Metric-Space A y) lemma-neighborhood-limit θ η η' = is-triangular-structure-Metric-Space ( A) ( limit-convergent-cauchy-approximation-Metric-Space A x) ( map-convergent-cauchy-approximation-Metric-Space A y θ) ( limit-convergent-cauchy-approximation-Metric-Space A y) ( θ +ℚ⁺ η +ℚ⁺ ε) ( θ +ℚ⁺ η') ( is-limit-limit-convergent-cauchy-approximation-Metric-Space A y θ η') ( is-triangular-structure-Metric-Space ( A) ( limit-convergent-cauchy-approximation-Metric-Space A x) ( map-convergent-cauchy-approximation-Metric-Space A x θ) ( map-convergent-cauchy-approximation-Metric-Space A y θ) ( θ +ℚ⁺ η) ( ε) ( Nxy θ) ( is-symmetric-structure-Metric-Space ( A) ( θ +ℚ⁺ η) ( map-convergent-cauchy-approximation-Metric-Space A x θ) ( limit-convergent-cauchy-approximation-Metric-Space A x) ( is-limit-limit-convergent-cauchy-approximation-Metric-Space ( A) ( x) ( θ) ( η)))) δ₁ : ℚ⁺ δ₁ = left-summand-split-ℚ⁺ δ δ₂ : ℚ⁺ δ₂ = right-summand-split-ℚ⁺ δ δₘ : ℚ⁺ δₘ = mediant-zero-min-ℚ⁺ δ₁ δ₂ θ : ℚ⁺ θ = modulus-le-double-le-ℚ⁺ δₘ θ<δ₁ : le-ℚ⁺ θ δ₁ θ<δ₁ = transitive-le-ℚ⁺ θ δₘ δ₁ ( le-left-mediant-zero-min-ℚ⁺ δ₁ δ₂) ( le-modulus-le-double-le-ℚ⁺ δₘ) θ<δ₂ : le-ℚ⁺ θ δ₂ θ<δ₂ = transitive-le-ℚ⁺ θ δₘ δ₂ ( le-right-mediant-zero-min-ℚ⁺ δ₁ δ₂) ( le-modulus-le-double-le-ℚ⁺ δₘ) η : ℚ⁺ η = le-diff-ℚ⁺ θ δ₁ θ<δ₁ η' : ℚ⁺ η' = le-diff-ℚ⁺ θ δ₂ θ<δ₂ lemma-ε-δ-θ-η : ((θ +ℚ⁺ η) +ℚ⁺ ε +ℚ⁺ (θ +ℚ⁺ η')) = ε +ℚ⁺ δ lemma-ε-δ-θ-η = ( ap-binary ( λ u v → u +ℚ⁺ ε +ℚ⁺ v) ( right-diff-law-add-ℚ⁺ θ δ₁ θ<δ₁) ( right-diff-law-add-ℚ⁺ θ δ₂ θ<δ₂)) ∙ ( ap (add-ℚ⁺' δ₂) (commutative-add-ℚ⁺ δ₁ ε)) ∙ ( associative-add-ℚ⁺ ε δ₁ δ₂) ∙ ( ap (add-ℚ⁺ ε) (eq-add-split-ℚ⁺ δ))
The map from a convergent Cauchy approximation in a saturated metric to its limit is short
module _ {l1 l2 : Level} (A : Metric-Space l1 l2) (is-saturated : is-saturated-Metric-Space A) where is-short-limit-convergent-cauchy-approximation-is-saturated-Metric-Space : is-short-function-Metric-Space ( metric-space-of-convergent-cauchy-approximations-Metric-Space A) ( A) ( limit-convergent-cauchy-approximation-Metric-Space A) is-short-limit-convergent-cauchy-approximation-is-saturated-Metric-Space ε x y Nxy = is-saturated ( ε) ( limit-convergent-cauchy-approximation-Metric-Space A x) ( limit-convergent-cauchy-approximation-Metric-Space A y) ( is-short-saturated-limit-convergent-cauchy-approximation-Metric-Space ( A) ( ε) ( x) ( y) ( Nxy)) short-limit-convergent-cauchy-approximation-is-saturated-Metric-Space : short-function-Metric-Space ( metric-space-of-convergent-cauchy-approximations-Metric-Space A) ( A) short-limit-convergent-cauchy-approximation-is-saturated-Metric-Space = limit-convergent-cauchy-approximation-Metric-Space A , is-short-limit-convergent-cauchy-approximation-is-saturated-Metric-Space