Base change of dependent reflexive graphs
Content created by Egbert Rijke.
Created on 2024-12-03.
Last modified on 2024-12-03.
module graph-theory.base-change-dependent-reflexive-graphs where
Imports
open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.transport-along-identifications open import foundation.universe-levels open import graph-theory.base-change-dependent-directed-graphs open import graph-theory.dependent-directed-graphs open import graph-theory.dependent-reflexive-graphs open import graph-theory.morphisms-reflexive-graphs open import graph-theory.reflexive-graphs
Idea
Consider a
dependent reflexive graph B
over
a reflexive graph A
, and consider a
graph homomorphism f : C → A
.
The
base change¶
f*B
of B
along f
is defined by substituting the values of f
into B
.
More precisely, f*B
is defined by
(f*B)₀ c := B₀ (f₀ c)
(f*B)₁ e := B₁ (f₁ e).
Definitions
Base change of dependent reflexive graphs
module _ {l1 l2 l3 l4 l5 l6 : Level} {A : Reflexive-Graph l1 l2} (C : Reflexive-Graph l3 l4) (f : hom-Reflexive-Graph C A) (B : Dependent-Reflexive-Graph l5 l6 A) where dependent-directed-graph-base-change-Dependent-Reflexive-Graph : Dependent-Directed-Graph l5 l6 (directed-graph-Reflexive-Graph C) dependent-directed-graph-base-change-Dependent-Reflexive-Graph = base-change-Dependent-Directed-Graph ( directed-graph-Reflexive-Graph C) ( hom-directed-graph-hom-Reflexive-Graph C A f) ( dependent-directed-graph-Dependent-Reflexive-Graph B) vertex-base-change-Dependent-Reflexive-Graph : (x : vertex-Reflexive-Graph C) → UU l5 vertex-base-change-Dependent-Reflexive-Graph = vertex-Dependent-Directed-Graph dependent-directed-graph-base-change-Dependent-Reflexive-Graph edge-base-change-Dependent-Reflexive-Graph : {x y : vertex-Reflexive-Graph C} (e : edge-Reflexive-Graph C x y) → vertex-base-change-Dependent-Reflexive-Graph x → vertex-base-change-Dependent-Reflexive-Graph y → UU l6 edge-base-change-Dependent-Reflexive-Graph = edge-Dependent-Directed-Graph dependent-directed-graph-base-change-Dependent-Reflexive-Graph refl-base-change-Dependent-Reflexive-Graph : {x : vertex-Reflexive-Graph C} (y : vertex-base-change-Dependent-Reflexive-Graph x) → edge-base-change-Dependent-Reflexive-Graph (refl-Reflexive-Graph C x) y y refl-base-change-Dependent-Reflexive-Graph {x} y = tr ( λ u → edge-Dependent-Reflexive-Graph B u y y) ( inv (refl-hom-Reflexive-Graph C A f x)) ( refl-Dependent-Reflexive-Graph B y) base-change-Dependent-Reflexive-Graph : Dependent-Reflexive-Graph l5 l6 C pr1 base-change-Dependent-Reflexive-Graph = dependent-directed-graph-base-change-Dependent-Reflexive-Graph pr2 base-change-Dependent-Reflexive-Graph _ = refl-base-change-Dependent-Reflexive-Graph
Recent changes
- 2024-12-03. Egbert Rijke. Hofmann-Streicher universes for graphs and globular types (#1196).