Differentiability of the identity map on proper closed intervals in the real numbers
Content created by Louis Wasserman.
Created on 2026-01-30.
Last modified on 2026-01-30.
{-# OPTIONS --lossy-unification #-} module analysis.differentiability-identity-map-on-proper-closed-intervals-real-numbers where
Imports
open import analysis.differentiable-real-maps-on-proper-closed-intervals-real-numbers open import elementary-number-theory.positive-rational-numbers open import foundation.constant-maps open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.universe-levels open import order-theory.large-posets open import real-numbers.dedekind-real-numbers open import real-numbers.difference-real-numbers open import real-numbers.distance-real-numbers open import real-numbers.inequality-real-numbers open import real-numbers.multiplication-nonnegative-real-numbers open import real-numbers.multiplication-real-numbers open import real-numbers.nonnegative-real-numbers open import real-numbers.proper-closed-intervals-real-numbers open import real-numbers.raising-universe-levels-real-numbers open import real-numbers.rational-real-numbers open import real-numbers.similarity-real-numbers
Idea
Given a
proper closed interval
[a, b] on the real numbers, the
identity function on [a, b] is
differentiable,
and its derivative is the constant
one function.
The derivative of the identity function is 1
module _ {l : Level} ([a,b] : proper-closed-interval-ℝ l l) where abstract is-derivative-const-one-id-real-map-proper-closed-interval-ℝ : is-derivative-real-map-proper-closed-interval-ℝ ( [a,b]) ( pr1) ( const (type-proper-closed-interval-ℝ l [a,b]) (raise-one-ℝ l)) is-derivative-const-one-id-real-map-proper-closed-interval-ℝ = let open inequality-reasoning-Large-Poset ℝ-Large-Poset in is-derivative-modulus-of-real-map-proper-closed-interval-ℝ [a,b] ( _) ( _) ( λ ε → ( one-ℚ⁺ , λ x y _ → chain-of-inequalities dist-ℝ (pr1 y -ℝ pr1 x) (raise-one-ℝ l *ℝ (pr1 y -ℝ pr1 x)) ≤ dist-ℝ (pr1 y -ℝ pr1 x) (pr1 y -ℝ pr1 x) by leq-eq-ℝ ( ap-dist-ℝ ( refl) ( ( eq-sim-ℝ ( preserves-sim-right-mul-ℝ _ _ _ ( symmetric-sim-ℝ (sim-raise-ℝ _ _)))) ∙ ( left-unit-law-mul-ℝ _))) ≤ zero-ℝ by leq-sim-ℝ (diagonal-dist-ℝ _) ≤ real-ℚ⁺ ε *ℝ dist-ℝ (pr1 x) (pr1 y) by is-nonnegative-real-ℝ⁰⁺ ( nonnegative-real-ℚ⁺ ε *ℝ⁰⁺ nonnegative-dist-ℝ _ _))) id-differentiable-map-proper-closed-interval-ℝ : {l : Level} ([a,b] : proper-closed-interval-ℝ l l) → differentiable-real-map-proper-closed-interval-ℝ l [a,b] id-differentiable-map-proper-closed-interval-ℝ {l} [a,b] = ( pr1 , ( λ _ → raise-one-ℝ l) , is-derivative-const-one-id-real-map-proper-closed-interval-ℝ [a,b])
Recent changes
- 2026-01-30. Louis Wasserman. Refactor differentiable functions (#1774).