The action on equivalences of functions out of subuniverses
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-09-12.
Last modified on 2024-04-25.
module foundation.action-on-equivalences-functions-out-of-subuniverses where
Imports
open import foundation.action-on-higher-identifications-functions open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.equivalence-induction open import foundation.subuniverses open import foundation.universe-levels open import foundation-core.contractible-types open import foundation-core.equivalences open import foundation-core.function-types open import foundation-core.identity-types
Idea
Consider a subuniverse P
of 𝒰
and a map
f : P → B
from the subuniverse P
into some type B
. Then f
has an
action on equivalences
(X ≃ Y) → (f X = f Y)
which is uniquely determined by the
identification
action-equiv f id-equiv = refl
. The action on equivalences fits in a
commuting square of maps
ap f
(X = Y) ---------------> (f X = f Y)
| |
equiv-eq | | id
∨ ∨
(X ≃ Y) ---------------> (f X = f Y)
action-equiv f
Definitions
module _ {l1 l2 l3 : Level} (P : subuniverse l1 l2) {B : UU l3} (f : type-subuniverse P → B) where abstract unique-action-equiv-function-subuniverse : (X : type-subuniverse P) → is-contr ( Σ ( (Y : type-subuniverse P) → equiv-subuniverse P X Y → f X = f Y) ( λ h → h X id-equiv = refl)) unique-action-equiv-function-subuniverse X = is-contr-map-ev-id-equiv-subuniverse P X ( λ Y e → f X = f Y) ( refl) action-equiv-function-subuniverse : (X Y : type-subuniverse P) → equiv-subuniverse P X Y → f X = f Y action-equiv-function-subuniverse X Y = ap f ∘ eq-equiv-subuniverse P compute-action-equiv-function-subuniverse-id-equiv : (X : type-subuniverse P) → action-equiv-function-subuniverse X X id-equiv = refl compute-action-equiv-function-subuniverse-id-equiv X = ap² f (compute-eq-equiv-id-equiv-subuniverse P)
Recent changes
- 2024-04-25. Fredrik Bakke. chore: Fix arrowheads in character diagrams (#1124).
- 2024-02-06. Egbert Rijke and Fredrik Bakke. Refactor files about identity types and homotopies (#1014).
- 2023-09-15. Fredrik Bakke. Define representations of monoids (#765).
- 2023-09-12. Egbert Rijke. Beyond foundation (#751).