Transport along crisp identifications
Content created by Fredrik Bakke.
Created on 2024-09-06.
Last modified on 2025-01-07.
{-# OPTIONS --cohesion --flat-split #-} module modal-type-theory.transport-along-crisp-identifications where
Imports
open import foundation.action-on-identifications-functions open import foundation.function-types open import foundation.identity-types open import foundation.universe-levels open import modal-type-theory.crisp-identity-types
Idea
Given a crisp type family B
that is
defined on crisp elements of A
, a
crisp identification p : x = y
in A
and a crisp element b : B x
, we can
transport¶
the element b
along the crisp identification p
to obtain an element
crisp-tr B p b : B y
.
This is a strengthening of
transport along identifications
for crisp identifications, because the type family B
is allowed to depend only
crisply on the base type A
.
Definitions
Transport along crisp identifications
crisp-tr : {@♭ l1 l2 : Level} {@♭ A : UU l1} (@♭ B : @♭ A → UU l2) {@♭ x y : A} (@♭ p : x = y) → @♭ B x → B y crisp-tr B refl x = x
Properties
Transport preserves concatenation of crisp identifications
module _ {@♭ l1 l2 : Level} {@♭ A : UU l1} {@♭ B : @♭ A → UU l2} where crisp-tr-concat : {@♭ x y z : A} (@♭ p : x = y) (@♭ q : y = z) (@♭ b : B x) → crisp-tr B (p ∙ q) b = crisp-tr B q (crisp-tr B p b) crisp-tr-concat p q b = crisp-based-ind-Id ( λ y q → crisp-tr B (p ∙ q) b = crisp-tr B q (crisp-tr B p b)) ( crisp-based-ind-Id ( λ y p → crisp-tr B (p ∙ refl) b = crisp-tr B p b) ( refl) ( p)) ( q)
Transposing crisp transport along the inverse of a crisp identification
module _ {@♭ l1 l2 : Level} {@♭ A : UU l1} {@♭ B : @♭ A → UU l2} where eq-transpose-crisp-tr : {@♭ x y : A} (@♭ p : x = y) {@♭ u : B x} {@♭ v : B y} → @♭ v = crisp-tr B p u → crisp-tr B (inv p) v = u eq-transpose-crisp-tr p {u} {.(crisp-tr B p u)} refl = crisp-based-ind-Id (λ y p → crisp-tr B (inv p) (crisp-tr B p u) = u) refl p eq-transpose-crisp-tr' : {@♭ x y : A} (@♭ p : x = y) {@♭ u : B x} {@♭ v : B y} → @♭ crisp-tr B p u = v → u = crisp-tr B (inv p) v eq-transpose-crisp-tr' p {u} {.(crisp-tr B p u)} refl = crisp-based-ind-Id (λ y p → u = crisp-tr B (inv p) (crisp-tr B p u)) refl p
Every crisp family of maps preserves crisp transport
preserves-crisp-tr : {@♭ l1 l2 l3 : Level} {@♭ I : UU l1} {@♭ A : @♭ I → UU l2} {@♭ B : @♭ I → UU l3} (@♭ f : (@♭ i : I) → A i → B i) {@♭ i j : I} (@♭ p : i = j) (@♭ x : A i) → f j (crisp-tr A p x) = crisp-tr B p (f i x) preserves-crisp-tr {A = A} {B} f {i} p x = crisp-based-ind-Id ( λ j p → f j (crisp-tr A p x) = crisp-tr B p (f i x)) ( refl) ( p)
Transporting along the action on crisp identifications of a function
crisp-tr-ap : {@♭ l1 l2 l3 l4 : Level} {@♭ A : UU l1} {@♭ B : @♭ A → UU l2} {@♭ C : UU l3} {@♭ D : @♭ C → UU l4} (@♭ f : A → C) (@♭ g : (@♭ x : A) → B x → D (f x)) {@♭ x y : A} (@♭ p : x = y) (@♭ z : B x) → crisp-tr D (ap f p) (g x z) = g y (crisp-tr B p z) crisp-tr-ap {A = A} {B} {C} {D} f g {x} p z = crisp-based-ind-Id ( λ y p → crisp-tr D (ap f p) (g x z) = g y (crisp-tr B p z)) ( refl) ( p)
Substitution law for crisp transport
substitution-law-crisp-tr : {@♭ l1 l2 l3 : Level} {@♭ X : UU l1} {@♭ A : UU l2} (@♭ B : @♭ A → UU l3) (@♭ f : X → A) {@♭ x y : X} (@♭ p : x = y) {@♭ x' : B (f x)} → crisp-tr B (ap f p) x' = crisp-tr (λ (@♭ x : X) → B (f x)) p x' substitution-law-crisp-tr B f p {x'} = crisp-tr-ap f (λ _ → id) p x'
Computing maps out of crisp identity types as crisp transports
module _ {@♭ l1 l2 : Level} {@♭ A : UU l1} {@♭ B : @♭ A → UU l2} {@♭ a : A} (@♭ f : (@♭ x : A) → @♭ (a = x) → B x) where compute-map-out-of-crisp-identity-type : (@♭ x : A) (@♭ p : a = x) → f x p = crisp-tr B p (f a refl) compute-map-out-of-crisp-identity-type x p = crisp-based-ind-Id (λ x p → f x p = crisp-tr B p (f a refl)) refl p
Computing crisp transport in the crisp type family of crisp identifications with a fixed target
crisp-tr-Id-left : {@♭ l : Level} {@♭ A : UU l} {@♭ a b c : A} (@♭ q : b = c) (@♭ p : b = a) → crisp-tr (_= a) q p = (inv q ∙ p) crisp-tr-Id-left {a = a} q p = crisp-based-ind-Id (λ y q → crisp-tr (_= a) q p = (inv q ∙ p)) refl q
Computing crisp transport in the crisp type family of crisp identifications with a fixed source
crisp-tr-Id-right : {@♭ l : Level} {@♭ A : UU l} {@♭ a b c : A} (@♭ q : b = c) (@♭ p : a = b) → crisp-tr (a =_) q p = (p ∙ q) crisp-tr-Id-right {a = a} q p = crisp-based-ind-Id (λ y q → crisp-tr (a =_) q p = (p ∙ q)) (inv right-unit) q
Recent changes
- 2025-01-07. Fredrik Bakke. Logic (#1226).
- 2024-09-06. Fredrik Bakke. Basic properties of the flat modality (#1078).