The field of complex numbers
Content created by Louis Wasserman.
Created on 2025-11-26.
Last modified on 2025-11-26.
module complex-numbers.field-of-complex-numbers where
Imports
open import commutative-algebra.heyting-fields open import commutative-algebra.invertible-elements-commutative-rings open import complex-numbers.apartness-complex-numbers open import complex-numbers.complex-numbers open import complex-numbers.large-ring-of-complex-numbers open import complex-numbers.local-ring-of-complex-numbers open import complex-numbers.multiplicative-inverses-nonzero-complex-numbers open import complex-numbers.raising-universe-levels-complex-numbers open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.negation open import foundation.universe-levels
Idea
The complex numbers form a Heyting field.
Definition
abstract is-zero-is-noninvertible-commutative-ring-ℂ : (l : Level) (z : ℂ l) → ¬ (is-invertible-element-Commutative-Ring (commutative-ring-ℂ l) z) → z = raise-ℂ l zero-ℂ is-zero-is-noninvertible-commutative-ring-ℂ l z ¬inv-z = is-tight-apartness-relation-ℂ l z (raise-ℂ l zero-ℂ) ( λ z#0 → ¬inv-z ( is-invertible-is-nonzero-ℂ ( z) ( apart-right-sim-ℂ ( z) ( raise-ℂ l zero-ℂ) ( zero-ℂ) ( sim-raise-ℂ' l zero-ℂ) ( z#0)))) is-heyting-field-local-commutative-ring-ℂ : (l : Level) → is-heyting-field-Local-Commutative-Ring (local-commutative-ring-ℂ l) is-heyting-field-local-commutative-ring-ℂ l = ( neq-raise-zero-one-ℂ l , is-zero-is-noninvertible-commutative-ring-ℂ l) heyting-field-ℂ : (l : Level) → Heyting-Field (lsuc l) heyting-field-ℂ l = ( local-commutative-ring-ℂ l , is-heyting-field-local-commutative-ring-ℂ l)
Recent changes
- 2025-11-26. Louis Wasserman. Complex vector spaces (#1692).