The field of complex numbers

Content created by Louis Wasserman.

Created on 2025-11-26.
Last modified on 2025-11-26.

module complex-numbers.field-of-complex-numbers where
Imports
open import commutative-algebra.heyting-fields
open import commutative-algebra.invertible-elements-commutative-rings

open import complex-numbers.apartness-complex-numbers
open import complex-numbers.complex-numbers
open import complex-numbers.large-ring-of-complex-numbers
open import complex-numbers.local-ring-of-complex-numbers
open import complex-numbers.multiplicative-inverses-nonzero-complex-numbers
open import complex-numbers.raising-universe-levels-complex-numbers

open import foundation.dependent-pair-types
open import foundation.identity-types
open import foundation.negation
open import foundation.universe-levels

Idea

The complex numbers form a Heyting field.

Definition

abstract
  is-zero-is-noninvertible-commutative-ring-ℂ :
    (l : Level) (z :  l) 
    ¬ (is-invertible-element-Commutative-Ring (commutative-ring-ℂ l) z) 
    z  raise-ℂ l zero-ℂ
  is-zero-is-noninvertible-commutative-ring-ℂ l z ¬inv-z =
    is-tight-apartness-relation-ℂ l z (raise-ℂ l zero-ℂ)
      ( λ z#0 
        ¬inv-z
          ( is-invertible-is-nonzero-ℂ
            ( z)
            ( apart-right-sim-ℂ
              ( z)
              ( raise-ℂ l zero-ℂ)
              ( zero-ℂ)
              ( sim-raise-ℂ' l zero-ℂ)
              ( z#0))))

is-heyting-field-local-commutative-ring-ℂ :
  (l : Level) 
  is-heyting-field-Local-Commutative-Ring (local-commutative-ring-ℂ l)
is-heyting-field-local-commutative-ring-ℂ l =
  ( neq-raise-zero-one-ℂ l ,
    is-zero-is-noninvertible-commutative-ring-ℂ l)

heyting-field-ℂ : (l : Level)  Heyting-Field (lsuc l)
heyting-field-ℂ l =
  ( local-commutative-ring-ℂ l ,
    is-heyting-field-local-commutative-ring-ℂ l)

Recent changes