Commuting squares of pointed homotopies
Content created by Egbert Rijke.
Created on 2024-03-13.
Last modified on 2024-04-25.
module structured-types.commuting-squares-of-pointed-homotopies where
Imports
open import foundation.universe-levels open import structured-types.pointed-2-homotopies open import structured-types.pointed-dependent-functions open import structured-types.pointed-families-of-types open import structured-types.pointed-homotopies open import structured-types.pointed-types
Idea
A square of pointed homotopies
top
f ------> g
| |
left | | right
∨ ∨
h ------> i
bottom
is said to be a
commuting square¶
of pointed homotopies if there is a pointed homotopy
left ∙h bottom ~∗ top ∙h right
. Such a pointed homotopy is called a
coherence¶
of the square.
Definitions
Commuting squares of pointed homotopies
module _ {l1 l2 : Level} {A : Pointed-Type l1} {B : Pointed-Fam l2 A} {f g h i : pointed-Π A B} (top : f ~∗ g) (left : f ~∗ h) (right : g ~∗ i) (bottom : h ~∗ i) where coherence-square-pointed-homotopies : UU (l1 ⊔ l2) coherence-square-pointed-homotopies = pointed-2-htpy ( concat-pointed-htpy left bottom) ( concat-pointed-htpy top right) coherence-square-pointed-homotopies' : UU (l1 ⊔ l2) coherence-square-pointed-homotopies' = pointed-2-htpy ( concat-pointed-htpy top right) ( concat-pointed-htpy left bottom)
Recent changes
- 2024-04-25. Fredrik Bakke. chore: Fix arrowheads in character diagrams (#1124).
- 2024-03-13. Egbert Rijke. Refactoring pointed types (#1056).